Advertisement

Combustion, Explosion, and Shock Waves

, Volume 49, Issue 5, pp 555–562 | Cite as

Experimental investigation of combustion of a gasless pelletized mixture of Ti + 0.5C in argon and nitrogen coflows

  • B. S. Seplyarskii
  • A. G. Tarasov
  • R. A. Kochetkov
Article

Abstract

Combustion of a pelletized mixture of titanium and carbon black placed in a quartz tube and exposed to a flow of argon or nitrogen is studied. The gas flow (cocurrent filtration) is provided by a fixed pressure gradient at the inlet and outlet of the tube, which did not exceed 1 atm. The possible modes of combustion of pelletized mixtures related to the presence of a more complex hierarchy of scales (micro, macro, and meso) compared to that of powder mixtures (micro, macro) are analyzed. A comparison is made of the burning rates of powder and pelletized mixtures. An increase in the burning rate when using pelletized mixtures was found experimentally. It is shown that the gas coflow through the pelletized mixture of Ti + 0.5C leads to an increase in the burning rate. It is established that the propagation of the flame front of the pelletized mixture of Ti + 0.5C in flows of nitrogen and argon is controlled by different reactions. In contrast to combustion of powder mixtures of Ti + 0.5C, in combustion of pelletized mixtures of Ti + 0.5C in a nitrogen flow, only one front is observed. It is proved that radiation plays a significant role in the propagation of the combustion front in the pelletized mixture of Ti + 0.5C.

Keywords

mixture of Ti + 0.5C pelletized composition combustion modes burning rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Merzhanov, I. P. Borovinskaya, and Yu. E. Volodin, Combustion of Porous Metal Samples in Gaseous Nitrogen and Synthesis of Nitrides, Report of Institute of Chemical Physics of the USSR Academy of Sciences (1971).Google Scholar
  2. 2.
    A. B. Avakyan, A. R. Bagramyan, I. P. Borovinskaya, S. L. Grigoryan, and A. G. Merzhanov, “Synthesis of Transition Metal Carbonitrides,” in Combustion Processes in Chemical Technology and Metallurgy (Chernogolovka, 1975), pp. 98–1134 [in Russian].Google Scholar
  3. 3.
    J. Degreve, J. Puszynski, and V. Hlavachek, “Synthesis of Nitrides and Hydrides by Filtration Combustion,” in Mater. Process by SHS, Ed. by K. A. Gabriel et al., MTL-SP-87-3 (Watertown, MA, 1987), pp. 247–278.Google Scholar
  4. 4.
    A. G. Merzhanov, V. I. Yukhvid, and I. P. Borovinskaya, “A Process for Producing Transition Metal Nitrides,” Authors Sertificate No. 684 849 (1976).Google Scholar
  5. 5.
    A. G. Merzhanov and A. S. Mukasyan, Solid-State Combustion (Torus Press, Moscow, 2007), p. 336 [in Russian].Google Scholar
  6. 6.
    H. Holleck, Double and Triple Carbide and Nitride Systems of the Transition Metals: Reference, Ed. by Yu. V. Levinskii (Metallurgiya, Moscow, 1988), p. 319 [Russian translation].Google Scholar
  7. 7.
    B. S. Seplyarskii, “Nature of the Anomalous Dependence of the Burning Rate of Gasless Systems on Diameter,” Dokl. Akad. Nauk 396(5), 640–643 (2004).Google Scholar
  8. 8.
    A. P. Amosov, A. G. Makarenko, A. R. Samboruk, B. S. Seplyarskii, A. A. Samboruk, I. O. Gerasimov, A. V. Orlov, and V. V. Yatsenko, “Granulation in the Powder Technology of Self-Propagating High-Temperature Synthesis,” Izv. Vyssh. Ucebn. Zaved., Poroshk. Metal. Funkts. Pokr., No. 2, 30–37 (2011).Google Scholar
  9. 9.
    A. P. Aldushin and B. S. Seplyarskii, “Exothermic Reaction Wave Propagation in Porous Media Exposed to a Gas Flow,” Dokl. Akad. Nauk SSSR, 241(1), 72–75 (1978).Google Scholar
  10. 10.
    A. G. Merzhanov and B. I. Khaikin, Theory of Combustion Waves in Homogeneous Media (Institute of Structural Macrokinetics, Russian Academy of Sciences, Chernogolovka, 1992), pp. 89–107.Google Scholar
  11. 11.
    V. K. Smolyakov, Yu. M. Maksimov, and V. G. Prokof’ev, “Dynamics of the Formation of the Macrostructure of the Product during Combustion of Gasless Systems,” in Mathematical Modeling of Combustion and Explosion of Energetic Systems (Izd. Tomsk. Univ., Tomsk, 2006), pp. 221–309 [in Russian].Google Scholar
  12. 12.
    A. S. Rogachev, “Microheterogeneous Mechanism of Gasless Combustion,” Fiz. Goreniya Vzryva 39(2), 38–47 (2003). [Combust., Expl., Shock Waves 39 (2), 169–158 (2003)].Google Scholar
  13. 13.
    A. S. Rogachev and A. G. Merzhanov, “On the Theory of Relay-Race Propagation of the Combustion Wave in Neterogeneous Systems,” Dokl. Akad. Nauk 365(6), 788–791 (1999).Google Scholar
  14. 14.
    A. S. Rogachev, A. S. Mukas’yan, and A. Varma, “Microstructure of Self-Propagating Waves of Exothermic Reactions in Heterogeneous Media,” Dokl. Akad. Nauk 366(6), 777–780 (1999).Google Scholar
  15. 15.
    A. G. Merzhanov “Propagation of Solid Flame in a Model Heterogeneous System,” Dokl. Akad. Nauk 353, 504–507 (1997).Google Scholar
  16. 16.
    E. V. Okolovich, A. G. Merzhanov, I. B. Khaikin, and K. G. Shkadinskii, “Propagation of the Combustion Zone in Melting Condensed Mixtures,” Fiz. Goreniya Vzryva 13(3), 326–335 (1977) [Combust., Expl., Shock Waves 13 (3), 264–272 (1977)].Google Scholar
  17. 17.
    V. K. Smolyakov, “Roughness of the Gasless Combustion Front,” Fiz. Goreniya Vzryva 37(3), 33–44 (2001) [Combust., Expl., Shock Waves 37 (3), 274–284 (2001)].Google Scholar
  18. 18.
    E. A. Levashov, Yu. V. Bogatov, and A. A. Milovidov, “Microkinetics and Mechanism of SHS Process in a System Based on Titanium Carbon,” Fiz. Goreniya Vzryva 27(1), 88–93 (1991) [Combust., Expl., Shock Waves 27 (1), 83–88 (1991)].Google Scholar
  19. 19.
    P. V. Klassen and I. G. Grishayev, Foundation of the Pelletization Technique (Khimiya, Moscow, 1982) [in Russian].Google Scholar
  20. 20.
    A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Powder Technology of Self-Propagating High-Temperature Synthesis of Materials (Mashinostroenie, Moscow, 2007) [in Russian].Google Scholar
  21. 21.
    A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, and S. V. Chuiko, Transition from Combustion to Explosion of Condensed Substances (Nauka, Moscow, 1973), Vol. 1, p. 32 [in Russian].Google Scholar
  22. 22.
    M. E. Deich, Technical Gas Dynamics (Gosenergoizdat, Moscow-Leningrad, 1961) [in Russian].Google Scholar
  23. 23.
    B. S. Seplyarskii, G. B. Brauer, and A. G. Tarasov, “Combustion of the Gasless System Ti + 0.5C in a Nitrogen Coflow,” Fiz. Goreniya Vzryva 47(3), 52–59 (2011) [Combust., Expl., Shock Waves 47 (3), 294–301 (2011)].Google Scholar
  24. 24.
    A. G. Tarasov, B. S. Seplyarskii, Yu. N. Barinov, and V. N. Semenova, “Self-Purification Effect at Titanium Carbonitride Synthesis in Combustion Regime,” Mendeleev Commun. 21(5), 289–290 (2011).CrossRefGoogle Scholar
  25. 25.
    V. E. Badalyan and Yu. P. Kuleshova, Production and Use of Polyvinyl Butyral (NIITEKHIM, Moscow, 1984) [in Russian].Google Scholar
  26. 26.
    B. S. Seplyarskii, V. S. Kostin, and G. B. Brauer, “Dynamic Combustion Regimes of the Ti-(Ti + 0.5C) in Layered System in a Concurrent Nitrogen Flow,” Fiz. Goreniya Vzryva 44(6), 44–51 (2008) [Combust., Expl., Shock Waves 44 (6), 655–661 (2008)].Google Scholar
  27. 27.
    A. V. Lykov, Theory of Drying (Energiya, Moscow, 1968) [in Russian].Google Scholar
  28. 28.
    B. S. Seplyarskii, S. G. Vadchenko, S. V. Kostin, G. B. Brauer, “Cimbustion of Ti + 0.5C and Ti + C Mixtures of Bulk Density in Inert Gas Coflow,” Fiz. Goreniya Vzryva 45(1), 30–37 (2009) [Combust., Expl., Shock Waves 45 (1), 25–31 (2009)].Google Scholar
  29. 29.
    B. S. Seplyarskii, B. G. Brauer, and A. G. Tarasov, “Mechanism of the Reaction Front in a Mixture of Fe2O3 + 2Al + 30% Al2O3,” Khim. Fiz. 29(7), 79–85 (2010).Google Scholar
  30. 30.
    B. S. Seplyarskii, B. G. Brauer, and A. G. Tarasov, “Mechanism of the Reaction-Front Propagation in the Cr2O3 + 2Al Mixture,” Fiz. Goreniya Vzryva 46(3), 69–74 (2010) [Combust., Expl., Shock Waves 46 (3), 301–306 (2010)].Google Scholar
  31. 31.
    N. P. Novikov, I. P. Borovinskaya, and A. G. Merzhanov, “Thermodynamic Analysis of the Reactions of Self-Propagating High-Temperature Synthesis,” in Combustion in Chemical Technology and Metallurgy (Chernogolovka, 1975), pp. 174–188.Google Scholar
  32. 32.
    Physical Encyclopedia, Vol. 5: Stroboscopic Instruments: Brightness (Bolshaya Sov. Entsiklopediya, Moscow, 1998) [in Russian].Google Scholar
  33. 33.
    D. Carole, N. Fréty, S. Etienne-Calas, C. Merlet, and R.-M. Marin-Ayral,, “Microstructural and Mechanical Characterization of Titanium Nitride Produced by SHS,” Mater. Sci. Eng: A 419,is. 1–2, 365–371 (2006).CrossRefGoogle Scholar
  34. 34.
    V. A. Knyazik, A. G. Merzhanov, B. V. Solomonov, and A. C. Shteinberg, “Macrokinetics of High-Temperature Titanium Interaction with Carbon under Electrothermal Explosion,” Fiz. Goreniya Vzryva 21(3), 69–73 (1985) [Combust., Expl., Shock Waves 21 (3), 333–337 (1985)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • B. S. Seplyarskii
    • 1
  • A. G. Tarasov
    • 1
  • R. A. Kochetkov
    • 1
  1. 1.Institute of Structural Macrokinetics and Problems of Materials ScienceRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations