Combustion, Explosion, and Shock Waves

, Volume 48, Issue 5, pp 561–569 | Cite as

Producing nanomaterials in combustion

  • Z. A. MansurovEmail author


This paper presents original results in the area of synthesis of fullerenes, carbon nanotubes, and superhydrophobic soot in hydrocarbon flames and data on the self-propagating hightemperature synthesis of nanomaterials obtained in recent years at the Institute of Combustion Problems.


nanomaterials soot formation fullerenes carbon nanotubes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Semenov, Some Problems of Chemical Kinetics and Reactivity (Izd. Akad. Nauk SSSR, Moscow, 1954) [in Russian].Google Scholar
  2. 2.
    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).Google Scholar
  3. 3.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1967; Plenum, New York, 1969).Google Scholar
  4. 4.
    G. I. Ksandopulo and V. V. Dubinin, Gas-Phase Chemistry of Combustion (Khimiya, Moscow, 1987) [in Russian].Google Scholar
  5. 5.
    A. G. Merzhanov, “Combustion and Explosion in Physical Chemistry and Technology of Inorganic Materials,” Usp. Khim. 72(4), 323–345 (2003).CrossRefGoogle Scholar
  6. 6.
    K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing and Computation (John Wiley and Sons, New York, 1992).Google Scholar
  7. 7.
    Nanotechnologies. Nanomaterials. Nanosystem Equipment. Global Progress Ed. by P. P. Mal’tsev (Tekhnosphera, Moscow, 2008 [in Russian].Google Scholar
  8. 8.
    W. F. Smith and J. Hashemi, Foundations of Materials Science and Engineering (McGraw-Hill, 2010).Google Scholar
  9. 9.
    A. Oberlin, M. Endo, and T. Koyama, “Filamentous Growth of Carbon Through Benzene Decomposition,” Cryst. Growth 32(3), 335–349 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 56–58 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    M. Endo, M. S. Strano, and P. M. Ajayan, Potential Applications of Carbon Nanotubes, Eds. by A. Jorio, G. Dresselhaus, M. S. Dresselhaus (2008), pp. 13–61. (Topics in Appl. Phys., Vol. 11.)Google Scholar
  12. 12.
    Z. A. Mansurov, “Some Applications of Nanocarbon Materials for Novel Devices,” in Nonoscale-Devices-Fundamentals, Ed. by R. Gross et al. (Springer, 2006), pp. 355–368.Google Scholar
  13. 13.
    A. E. Sychev and A. G. Merzhanov, “Self-Propagating High-Temperature Synthesis of Nanomaterials,” Usp. Khim. 73(2), 157–170 (2004).Google Scholar
  14. 14.
    H. W. Kroto, J. R. Health, S. C. O’Brien, R. F. Curl, and R. F. Smalley, “C60: Buckminsterfullerene,” Nature 318(6042), 162–164 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    J. B. Howard, “Fullerenes Formation in Flames,” in 24th Symp. (Int.) on Combustion (1992), pp. 933–946.Google Scholar
  16. 16.
    W. Krätschmer, L. Lamb, K. Fostiropoulos, D. Huffman, “Solid C: A New Form of Carbon,” Nature 347, 354–358 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    C. Jäger, F. Huisken, Jansa I. Lamas, Th. Henning, “Formation of Polycyclic Aromatic Hydrocarbons and Carbonaceous Solids in Gas-Phase Condensation Experiments,” Astrophys., No 696, 706–712 (2009).Google Scholar
  18. 18.
    J. Ahrens, M. Bachmann, Th. Baum, J. Griesheimer, R. Kovacs, P. Weilmünster, K.-H. Homann, “Fullerenes and Their Ions in Hydrocarbon Flames,” Int. J. Mass Spectrom. Ion Proc. 138, 133–148 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    W. J. Grieco, A. L. Lafleur, K. C. Swallow, et al. “Fullerenes and PAH in Low-Pressure Premixed Benzene/Oxygen Flames,” in Symp. (Int.) on Combustion 27(2), 1669–1675 (1998).CrossRefGoogle Scholar
  20. 20.
    Z. A. Mansurov, N. G. Prikhodko, T. T. Mashan, and B. T. Lesbaev, “The Study of Influence of Electric Field on Soot Formation at Low Pressure,” Chem. Physics 25(10), 18–22 (2006).Google Scholar
  21. 21.
    M. Bachman, W. Wiese, and K.-H. Homann, “Thermal and Chemical Influences on the Soot Mass Growth,” in Symp. (Int.) on Combustion 25(1), 635–643 (1994).CrossRefGoogle Scholar
  22. 22.
    N. G. Prikhod’ko, “Features of Formation of Fullerenes and Nanotubes in Combustion of Hydrocarbons in an Electric Field,” Doct. Dissertation in Chem. Sci. (Al-Farabi Kazakh National University, Almaty, 2010).Google Scholar
  23. 23.
    W. Merchan-Merchan, A. V. Saveliev, L. A. Kennedy, “High-Rate Flame Synthesis of Vertically Aligned Carbon Nanotubes using Electric Field Control,” Carbon 42, 599–608 (2004).CrossRefGoogle Scholar
  24. 24.
    D. I. Chenchik, Z. A. Mansurov, T. A. Shabanova, and T. Orynshaikh, “Producing Carbon Nanotubes in an Opposed-Jet Burner,” in Int. Symp. Combustion and Plasma Chemistry (Almaty, 2007), pp. 288–290.Google Scholar
  25. 25.
    M. Nazhipkyzy, Z. A. Mansurov, I. K. Puri, T. A. Shabanova, and I. A. Tsyganova, “Producing a Superhydrophobic Carbon Surface during Propane Combustion,” Neft Gaz 5(59), 27–33 (2010).Google Scholar
  26. 26.
    A. Levesque, V. T. Binh, V. Semet, D. Guillot, R. Y. Filit, M. D. Brookes, et al., “Mono Disperse Carbon Nanopearls an a Foam-Like Arrangement: A New Carbon Nano-Compound for Cold Cathodes,” Thin Solid Films, Nos. 464 and 465, 308–314 (2004).Google Scholar
  27. 27.
    Zh. Yermekova, Z. Mansurov, A. S. Mukasyan, “Combustion Synthesis of Silicon Nanopowders,” Int. J. Self-Propag. High-Temp. Syn. 19(2), 96–103 (2010).Google Scholar
  28. 28.
    D. C. Abdulkarimova, I. M. Vongai, Z. A. Mansurov, and O. Odavara, “Producing Boride Composites by SHS,” in Int. Symp. Physics and Chemistry of Carbon Materials/Nanoengineering (Almaty, 2010), pp. 116–118.Google Scholar
  29. 29.
    H. Chen, Y. Cao, X. Xiang, J. Li, C. Ge, “Fabrication of β-Si3n4 Nano-Fibers,” J. Alloys Compounds 325(1, 2), L1–L3 (2001).CrossRefGoogle Scholar
  30. 30.
    P. L. Longland, A. I. Moulson, “The growth of α- and β-Si3N4 Accompanying the Nitriding of Silicon Powder Compacts,” J. Mater. Sci 13(10), 2279–2280 (1978).ADSCrossRefGoogle Scholar
  31. 31.
    V. Valcárcel, A. Souto, F. Guitián, “Development of Single-Crystal α-Al2O3 Fibers by Vapor-Liquid-Solid Deposition (VLS) from Aluminum and Powder Silica,” Adv. Mater 10(2), 138–140 (1998).CrossRefGoogle Scholar
  32. 32.
    G. G. Aldashukurova, N. V. Shikina, A. V. Mironenko, Z. A. Mansurov, Z. R. Ismagilov, “Catalysts for Processing Light Hydrocarbon Raw Stock: Combustion Synthesis and Characterization,” Int. J. Self-Propag. High-Temp. Syn. 20(2), 124(4) (2011).Google Scholar
  33. 33.
    A. S. Mykasyan, P. Dinka, “Novel Approaches to Solution-Combustion Synthesis,” Int. J. Self-Propag. High-Temp. Syn. 16(1), 23–35 (2007).CrossRefGoogle Scholar
  34. 34.
    B. M. Reddy, G. K. Reddy, I. Ganesh, M. F. Ferreira Jose, “Single Step Synthesis of Nanosized CeO2—MxOy Mixed Oxides (MxOy = SiO2, TiO2, ZrO2, and Al2O3) by Microwave Induced Solution Combustion Synthesis: Characterization and CO Oxidation,” J. Mater. Sci. Lett. 44(11), 2743–2751 (2009).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Combustion ProblemsAlmatyKazakhstan

Personalised recommendations