, Volume 63, Issue 5, pp 791–797 | Cite as

The Effect of Immersion Agents on the Weight and Geometric Parameters of Myocardial Tissue in Vitro

  • D. K. Tuchina
  • A. N. Bashkatov
  • E. A. Genina
  • V. V. Tuchin

Abstract—The effect of 40%-glucose solution and 60%-glycerol solution on the weight and geometric parameters of the myocardium was studied in vitro in order to improve the accuracy of estimating the glucose and glycerol diffusion coefficients in the myocardium by including changes in the geometry and water content of a tissue sample in a mathematical algorithm. The temporal kinetics of the weight, thickness, area, and volume were measured using porcine myocardium samples during their immersion in 60%-glycerol solution or 40%-glucose solution in vitro. All parameters started to decrease immediately after placing myocardium samples in immersion agents (tissue shrinkage). The weight and geometric parameters of the sample then increased gradually (tissue swelling), leading to tissue saturation in almost all cases. By approximating the temporal kinetics, the degree of dehydration and the characteristic times of transverse and longitudinal shrinkage and swelling of the myocardium were determined. More significant and rapid dehydration of myocardial tissue was observed case of using 60%-glycerol solution, while a stronger and faster swelling of the myocardium was observed when 40%-glucose solution was applied.

Keywords: myocardium glycerol glucose optical clearing dehydration swelling 



This work was supported by the Russian Foundation for Basic Research (project nos. 18-52-16025, 18-42-703012, 18-32-00587, and 17-02-00358), the Russian Science Foundation (project no. 18-12-00328), and a grant from the President of the Russian Federation (project no. SP-3507.2018.4).


  1. 1.
    S. Alali, M. Ahmad, A. Kim, et al., J. Biomed. Opt. 17 (4), 045004 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    T. Lindbergh, E. Haggblad, H. Ahn, et al., J. Biophotonics 4 (4), 268 (2011).CrossRefGoogle Scholar
  3. 3.
    Y. Wang, K. Zhang, D. Duan, and G. Yao, Biomed. Opt. Exp. 8 (3), (2017).Google Scholar
  4. 4.
    Y. Xinwen, G. Yu, C. M. Charles, and P. H. Christine, J. Biomed. Opt. 21 (6), 061006 (2016).CrossRefGoogle Scholar
  5. 5.
    Handbook of Optical Biomedical Diagnostics, 2nd ed., Ed. by V. V. Tuchin (SPIE Press, Bellingham, WA, 2016).Google Scholar
  6. 6.
    X. Wen, Z. Mao, Z. Han, et al., J. Biophotonics 3 (1), 44 (2010).CrossRefGoogle Scholar
  7. 7.
    D. K. Tuchina, A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, J. Innovat. Optic. Health Sci. 8 (3), 1541006 (2015).Google Scholar
  8. 8.
    J. Wang, N. Ma, R. Shi, et al., IEEE J. Sel. Top. Quant. Electron. 20 (2), 7101007 (2014).Google Scholar
  9. 9.
    L. M. Oliveira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, Laser Phys. 23 (7), 075606 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    X. Guo, Z. Guo, H. Wei, et al., Laser Phys. 20 (9), 1849 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    E. A. Genina, A. N. Bashkatov, A. A. Korobko, et al., J. Biomed. Opt. 13 (2), 021102 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    D. K. Tuchina, R. Shi, A. N. Bashkatov, et al., J. Biophotonics 8 (4), 273 (2015).CrossRefGoogle Scholar
  13. 13.
    Physical Properties of Glycerine and Its Solutions (Glycerine Producers’ Association, New York, 1963).Google Scholar
  14. 14.
    R. C. Rowe, P. J. Sheskey, and M. E. Quinn, Handbook of Pharmaceutical Excipients (Pharmaceutical Press and American Pharmacists Association, 2009).Google Scholar
  15. 15.
    L. A. Alves, J. B. A. Silva, and M. Giulietti, J. Chem. Eng. Data 52 (6), 2166 (2007).CrossRefGoogle Scholar
  16. 16.
    S. G. Schultz and A. K. Solomon, J. Gen. Physiol. 44, 1189 (1961).CrossRefGoogle Scholar
  17. 17.
    B. Amsden, Macromolecules 31 (23), 8382 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    N. F. Stas’ and L. D. Svintsova, Chemistry of Solutions (Izd. TPU, Tomsk, 2006) [in Russian].Google Scholar
  19. 19.
    A. A. Ragimov and G. N. Shcherbakova, Infusion–Transfusion Therapy (GEOTAR_Media, Moscow, 2010) [in Russian].Google Scholar
  20. 20.
    Y. Huang and K. M. Meek, Biophys. J. 77, 1655 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    T. T. Berezov and B. F. Korovkin, Biological Chemistry (Meditsina, Moscow, 1998) [in Russian].Google Scholar
  22. 22.
    M. I. Ravich-Shcherbo and V. V. Novikov, Physical and Colloid Chemistry (Vysshaya Shkola, Moscow, 1975) [in Russian].Google Scholar
  23. 23.
    E. M. Culav, C. H. Clark, and M. J. Merrilees, Phys. Ther. 79, 308 (1999).Google Scholar
  24. 24.
    A. Katchalsky, Prog. Biophys. Chem. 4, 1 (1954).CrossRefGoogle Scholar
  25. 25.
    A. Pirie, Biochem. J. 41, 185 (1947).CrossRefGoogle Scholar
  26. 26.
    A. Pirie and R. van Heyningen, Biochemistry of the Eye (Oxford: Blackwell, 1956; Meditsina, Moscow, 1968).Google Scholar
  27. 27.
    D. K. Tuchina, Cndidate’s Dissertation in Physics and Mathematics (Saratov, 2016).Google Scholar
  28. 28.
    J. W. Wiechers, J. C. Dederen, and A. V. Rawlings, in Skin Moisturization, 2nd ed., Ed. by A. V. R. Rawlings and J. Leyden (Informa Healthcare, Taylor & Francis Group, New York, 2009), pp. 309–321.Google Scholar
  29. 29.
    C. Molteni and M. Parrinello, J. Am. Chem. Soc. 120, 2168 (1998).CrossRefGoogle Scholar
  30. 30.
    A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, et al., Biophysics (Moscow) 48 (2), 292 (2003).Google Scholar
  31. 31.
    S. Giwa, J. K. Lewis, L. Alvarez, et al., Nat. Biotechnol. 35 (6), 530 (2017).CrossRefGoogle Scholar
  32. 32.
    J. Choi and J. C. Bischof, Cryobiology 60, 52 (2010).CrossRefGoogle Scholar
  33. 33.
    M. P. Longinotti, J. A. T. Gonzalez, and H. R. Corti, Cryobiology 69, 84 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. K. Tuchina
    • 1
    • 2
    • 3
  • A. N. Bashkatov
    • 1
    • 2
  • E. A. Genina
    • 1
    • 2
  • V. V. Tuchin
    • 1
    • 2
    • 4
  1. 1.Saratov, 410012 Russia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Precision Mechanics and Control, Russian Academy of SciencesSaratovRussia

Personalised recommendations