, Volume 63, Issue 5, pp 805–813 | Cite as

Fatty Acid Levels in Striated Muscles of Chronic Alcohol-Fed Rats

  • T. P. Kulagina
  • Yu. V. Gritsyna
  • A. V. Aripovsky
  • V. K. Zhalimov
  • I. M. Vikhlyantsev

Abstract—Changes in the fatty acid levels in the cardiac and gastrocnemius muscles of rats that were chronically alcoholized for 3 and 6 months were studied using two methods of alcoholization: 30% ethanol-containing agar (method I) and a 5% ethanol-containing liquid diet with a balanced nutritional status (method II). In the control group, the fatty acid level in the cardiac muscle was considerably higher than that in the gastrocnemius muscle. In the animals that were alcoholized over a 3-month period using method I, a considerable increase in the levels of myristic, pentadecanoic, palmitic, stearic, and dihomo-γ-linolenic acids and the total amount of fatty acids and a decrease in ω-3 docosapentaenoic acid level were found in the cardiac muscle. After a 6-month period, during which rats were alcoholized using method I, an increase in the levels of palmitoleic and ω-6 docosapentaenoic acids and a decrease in the levels of stearic, eicosadienoic, and arachidonic acids were found. The amount of ω-3 docosapentaenoic acid in the myocardium, compared to that observed after a 3-month period during which rats were alcoholized, remained reduced compared to the control. In the gastrocnemius muscle of rats alcoholized for 3 months using method I, the amounts of myristic, vaccenic, dihomo-γ-linolenic, and ω-6 docosapentaenoic acid increased. Simultaneously, there was a tendency for the total amount of saturated, monounsaturated, and ω-6 polyunsaturated fatty acids and the total amount of fatty acids to rise. After a 6-month alcoholization, a decrease in the levels of myristic, oleic, linoleic, α- and γ-linolenic, and eicosadienoic acids, as well as the total amount of saturated, ω-6 polyunsaturated fatty acids and the total amount of all fatty acids was found. When animals were alcoholized over a 3-month period using method II, a significant increase in the amount of dihomo-γ-linolenic acid was detected in the cardiac and gastrocnemius muscles. The role of these changes in the muscle pathologies is discussed.

Keywords: chronic alcohol-fed rats fatty acids striated muscles 



  1. 1.
    C. H. Lang, R. A. Frost, A. D. Summer, and T. C. Vary, Int. J. Biochem. Cell. Biol. 37 (10), 2180 (2005).CrossRefGoogle Scholar
  2. 2.
    T. L. Nemirovskaya, B. S. Shenkman, O. E. Zinovyeva, Hum. Physiol. 41 (6), 625 (2015).CrossRefGoogle Scholar
  3. 3.
    B. S. Shenkman, S. P. Belova, O. E. Zinovyeva, et al., Alcohol Clin. Exp. Res. 42 (1), 41 (2018).CrossRefGoogle Scholar
  4. 4.
    Yu. V. Gritsyna, N. N. Salmov, I. M. Vikhlyantsev, et al., Mol. Biol. (Moscow) 47 (6), 871 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. V. Gritsyna, N. N. Salmov, A. G. Bobylev, et al., Alcohol Clin. Exp. Res. 41 (10), 1686 (2017).CrossRefGoogle Scholar
  6. 6.
    Yu. V. Gritsyna, N. N. Salmov, A. G. Bobylev, et al., Biochemistry (Moscow), 82 (2), 168 (2017).CrossRefGoogle Scholar
  7. 7.
    J. L. Steiner and C. H. Lang, Am. J. Physiol. Endocrinol. Metab. 308: E699 (2015).CrossRefGoogle Scholar
  8. 8.
    C. Lipina and H. S. Hundal, J. Cachexia Sarcopenia Muscle 8 (2), 190 (2017).CrossRefGoogle Scholar
  9. 9.
    M. E. Woodworth-Hobbs, M. B. Hudson, J. A. Rah-nert, et al., J. Nutr. Biochem. 25 (8), 868 (2014).CrossRefGoogle Scholar
  10. 10.
    Y. Liu, F. Chen, J. Odle, et al., J. Nutr. 143 (8), 1331 (2013).CrossRefGoogle Scholar
  11. 11.
    C. J. Green, K. Macrae, S. Fogarty, et al., Biochem J. 435 (2), 463 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. Wang, J. Song, L. Zhang, et al., Cell Stress Chaperones 22 (2), 245 (2017).CrossRefGoogle Scholar
  13. 13.
    J. Ren, Novartis Found Symp. 285, 269, discussion 76–79, 198 (2007).Google Scholar
  14. 14.
    A. I. Cederbaum, Y. Lu, and D. Wu, Arch. Toxicol. 83 (6), 519 (2009).CrossRefGoogle Scholar
  15. 15.
    S. Balbo and P. J. Brooks, Adv. Exp. Med. Biol. 815, 71 (2015).CrossRefGoogle Scholar
  16. 16.
    R. J. Dinis-Oliveira, Curr. Drug Metab. 17, 327 (2016).CrossRefGoogle Scholar
  17. 17.
    C. Hu, F. Ge, E. Hyodo, et al., J. Mol. Cell Cardiol. 59, 30 (2013).CrossRefGoogle Scholar
  18. 18.
    R. O. Salem, M. Laposata, R. Rajendram, et al., Alcohol Alcohol. 41 (6), 598 (2006).CrossRefGoogle Scholar
  19. 19.
    M. E. Beckemeier and P. S. Bora, J. Mol. Cell Cardiol. 30 (11), 2487 (1998).CrossRefGoogle Scholar
  20. 20.
    C. Heier, H. Xie, and R. Zimmermann, IUBMB Life 68 (12), 916 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Herms, M. Bosch, N. Ariotti, et al., Curr. Biol. 23 (15), 1489 (2013).CrossRefGoogle Scholar
  22. 22.
    D. Sunnasy, S. R. Cairns, F. Martin, et al., J. Clin. Pathol. 36 (7), 778 (1983).CrossRefGoogle Scholar
  23. 23.
    C. N. Lang, D. Wu, R. A. Frost, et al., Am. J. Physiol. Endocrinol. Metab. 277, E268 (1999).CrossRefGoogle Scholar
  24. 24.
    C. S. Lieber and L. M. DeCarli, Alcohol Alcohol. 24, 197 (1989).Google Scholar
  25. 25.
    D. R. Knapp, Handbook of Analytical Derivatization Reactions (Wiley, New York, 1979).Google Scholar
  26. 26.
    L. Dan and M. Laposata, Alcohol Clin. Exp. Res. 21 (2), 286 (1997).CrossRefGoogle Scholar
  27. 27.
    A. A. Nanji, B. Griniuviene, S. M. Sadrzadeh, et al., J. Lipid Res. 36 (4), 736 (1995).Google Scholar
  28. 28.
    M. J. Ronis, S. Korourian, M. Zipperman, et al., J. Nutr. 134 (4), 904 (2004).CrossRefGoogle Scholar
  29. 29.
    M. Park, A. Sabetski, Y. Kwan Chan, et al., J. Cell Physiol. 230 (3), 630 (2015).CrossRefGoogle Scholar
  30. 30.
    M. Jové, A. Planavila, J. C. Laguna, et al., Endocrinology 146 (7), 3087 (2005).Google Scholar
  31. 31.
    M. Jové, A. Planavila, R. M. Sánchez, et al., Endocrinology 147 (1), 552 (2006).Google Scholar
  32. 32.
    A. Kadotani, Y. Tsuchiya, H. Hatakeyama, et al., Am. J. Physiol. Endocrinol. Metab. 297 (6), E1291 (2009).CrossRefGoogle Scholar
  33. 33.
    M. E. Woodworth-Hobbs, B. D. Perry, J. A. Rahnert, et al., Physiol. Rep. 5 (23), e13530 (2017).CrossRefGoogle Scholar
  34. 34.
    L. Salvadó, T. Coll, A. M. Gómez-Foix, et al., Diabetologia 56, 1372 (2013).Google Scholar
  35. 35.
    H. Lee, J. Y. Lim, and S. J. Choi, Oxid. Med. Cell Longev. 2017:2739721 (2017). doi 10.1155/2017/2739721Google Scholar
  36. 36.
    A. Akoumi, T. Haffar, M. Mousterji, et al., Exp. Cell Res. 354 (2), 85 (2017).CrossRefGoogle Scholar
  37. 37.
    C. P. Calder, Biochem. Soc. Trans. 45 (5), 1105 (2017).CrossRefGoogle Scholar
  38. 38.
    P. C. Calder, Biochim. Biophys. Acta 1851 (4), 469 (2015).CrossRefGoogle Scholar
  39. 39.
    G. Yin, Y. Wang, X. M. Cen, et al., J. Immunol. Res. 2017:3262384 (2017). doi 10.1155/2017/3262384Google Scholar
  40. 40.
    Y. Zhang, M. Zhang, B. Lyu, et al., Sci. Rep. 7, 36368 (2017). doi 10.1038/srep36368ADSCrossRefGoogle Scholar
  41. 41.
    Y. Wada, S. Sakiyama, H. Sakai, and F. Sakane, Lipids 51 (8), 897 (2016). doi 10.1007/s11745-016-4162-9CrossRefGoogle Scholar
  42. 42.
    A. Ochi, T. Abe, R. Nakao, et al., Arch. Biochem. Biophys. 570, 23 (2015). doi 10.1016/ Scholar
  43. 43.
    Yu. V. Gritsyna, A. D. Ulanova, N. N. Salmov, et al., Mol. Biol. (Moscow) 53 (1), (2019).Google Scholar
  44. 44.
    S. Tripathy and D. B. Jump, J. Lipid Res. 54 (1), 71 (2013).CrossRefGoogle Scholar
  45. 45.
    A. Matoba, N. Matsuyama, S. Shibata, et al., Am. J. Physiol. Lung. Cell. Mol. Physiol. 314 (3), L333 (2018).CrossRefGoogle Scholar
  46. 46.
    S. Sergeant, E. Rahbar, and F. H. Chilton, Eur. J. Pharmacol. 785, 77 (2016).CrossRefGoogle Scholar
  47. 47.
    X. Wang, H. Lin, and Y. Gu, Lipids Health Dis. 11, 25 (2012).CrossRefGoogle Scholar
  48. 48.
    J. Yeung, B. E. Tourdot, R. Adil, et al., Arterioscler. Thromb. Vasc. Biol. 36 (10), 2068 (2016).CrossRefGoogle Scholar
  49. 49.
    J. L. Marques-Rocha, M. Garcia-Lacarte, M. Samblas, et al., J. Physiol. Biochem. (2018). doi 10.1007/ s13105-018-0629-xGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia
  2. 2.Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchinoRussia
  3. 3.State Research Center for Applied Microbiology and BiotechnologyObolenskRussia
  4. 4.Pushchino State Institute of Natural SciencesPushchinoRussia

Personalised recommendations