Advertisement

Biophysics

, Volume 63, Issue 5, pp 743–750 | Cite as

Modulation of the Activity of Succinate Dehydrogenase by Acetylation with Chemicals, Drugs, and Microbial Metabolites

  • N. I. FedotchevaEmail author
  • M. N. Kondrashova
  • E. G. Litvinova
  • M. V. Zakharchenko
  • N. V. Khunderyakova
  • N. V. Beloborodova
CELL BIOPHYSICS

Abstract—The effects of acetylating and deacetylating compounds on the activity of succinate dehydrogenase, as well as on the membrane potential and calcium retention capacity of the isolated liver mitochondria, supported by the oxidation of succinate, has been investigated. The chemical reagent N-acetylimidazole, the microbial metabolite phenylacetate, along with the drugs acetylsalicylic acid and N-acetylcysteine, were used as acetylating compounds. These compounds reduced succinate dehydrogenase activity to different extents depending on the concentration and incubation conditions. An inhibitory analysis using intermediate electron carriers has shown that the ubiquinone-binding site of the enzyme undergoes acetylation. The inhibition was partially eliminated or prevented by pre-incubation of the mitochondria with nicotinamide adenine dinucleotide, a co-factor for deacetylation, and with polyamine spermidine, an acceptor of acetyl groups.

Keywords: acetylation succinate dehydrogenase microbial metabolites N-acetylimidazole acetylsalicylic acid phenylacetate 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, projects no. 16-04-00636 and 16-04-00342, and the Russian Science Foundation, project no. 15-15-00110.

REFERENCES

  1. 1.
    K. J. Menzies, H. Zhang, E. Katsyuba, et al., Nat. Rev. Endocrinol. 12 (1), 43 (2016).CrossRefGoogle Scholar
  2. 2.
    W. G. Kaelin, Jr. and S.L. McKnight, Cell 153 (1), 56 (2013).CrossRefGoogle Scholar
  3. 3.
    C. Carrico, J. G. Meyer, W. He, et al., Cell Metab. 27 (3), 497 (2018).CrossRefGoogle Scholar
  4. 4.
    G. R. Wagner and R. M. Payne, J. Aging Res. (2011). doi 10.4061/2011/234875Google Scholar
  5. 5.
    S. C. Kim, R. Sprung, Y. Chen, et al., Mol. Cell 23 (18), 607 (2006).CrossRefGoogle Scholar
  6. 6.
    L. M. Britton, A. Newhart, N. V. Bhanu, et al., Epigenetics 8 (10), 1101 (2013).CrossRefGoogle Scholar
  7. 7.
    A. M. James, K. Hoogewijs, A. Logan, et al., Cell Rep. 18 (9), 2105 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Baeza, M. J. Smallegan, and J. M. Denu, Trends Biochem. Sci. 41 (3), 231 (2016).CrossRefGoogle Scholar
  9. 9.
    E. Verdin, M. D. Hirschey, L. W. Finley, et al., Trends Biochem. Sci. 35 (12), 669 (2010).CrossRefGoogle Scholar
  10. 10.
    A. S. Olia, K. Barker, C. E. McCullough, et al., ACS Chem. Biol. 10 (9), 2034 (2015). http://www.ncbi.nlm.nih.gov/pubmed/26083674.CrossRefGoogle Scholar
  11. 11.
    G. R. Wagner and M. D. Hirschey, Mol. Cell. 54 (1), 5 (2014).CrossRefGoogle Scholar
  12. 12.
    G. R. Wagner and R. M. Payne, J. Biol. Chem. 288 (40), 29036 (2013).CrossRefGoogle Scholar
  13. 13.
    E. V. Grishina, M. Kh. Galimova, et al., Biol. Membrany 32 (5–6), 319 (2015).Google Scholar
  14. 14.
    L. W. Finley, W. Haas, V. Desquiret-Dumas, et al., PLoS One 6 (8), e23295 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    H. Cimen, M. J. Han, Y. Yang, et al., Biochemistry 49, 304 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Fernandes, A. Weddle, C. S. Kinter, et al., Biochemistry 54 (25), 4008 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Waldecker, T. Kautenburger, H. Daumann, et al., J. Nutr. Biochem. 19 (9), 587 (2008).CrossRefGoogle Scholar
  18. 18.
    H. Zhang, M. Du, Q. Yang, et al., J. Nutr. Biochem. 27, 299 (2016).CrossRefGoogle Scholar
  19. 19.
    J. Sun, Q. Wu, H. Sun, et al., Int. J. Mol. Sci. 15 (11), 21069 (2014).CrossRefGoogle Scholar
  20. 20.
    M. L. Soliman, M. D. Smith, H. M. Houdek, et al., J. Neuroinflammation 9, 51 (2012).CrossRefGoogle Scholar
  21. 21.
    B. T. Weinert, V. Iesmantavicius, S. A. Wagner, et al., Mol. Cell. 51, 265 (2013).CrossRefGoogle Scholar
  22. 22.
    M. L. Kuhn, B. Zemaitaitis, L. I. Hu, et al., PloS One 9, e94816 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    G. D. Cymes, M. M. Iglesias, and C. Wolfenstein-Todel, Int. J. Pept. Prot. Res. 42 (1), 33 (1993).CrossRefGoogle Scholar
  24. 24.
    Y. Nakae and M. Shono, Histochem. J. 18 (4), 169 (1986).CrossRefGoogle Scholar
  25. 25.
    J. M. Argello and J. H. Kaplan, Biochemistry 29 (24), 5775 (1990).CrossRefGoogle Scholar
  26. 26.
    M. H. Tatham, C. Cole, P. Scullion, et al., Mol. Cell Proteomics 16 (2), 310 (2017).CrossRefGoogle Scholar
  27. 27.
    R. Uppala, B. Dudiak, M. E. Beck, et al., Biochem. Biophys. Res. Commun. 482 (2), 346 (2017).CrossRefGoogle Scholar
  28. 28.
    N. I. Fedotcheva, E. G. Litvinova, M. V. Zakharchenko, et al., Biochemistry (Moscow) 82 (2), 192 (2017).CrossRefGoogle Scholar
  29. 29.
    T. A. Fedotcheva, V. V. Teplova, and N. I. Fedotcheva, Biol. Membrany 35 (1), 79 (2018).Google Scholar
  30. 30.
    L. Guo, A. A. Shestov, A. J. Worth, et al., J. Biol. Chem. 291 (1), 42 (2016).CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, J. Yin, L. Zhang, et al., Neurol. Res. 39 (3), 248 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    S. Mandal, A. Mandal, and M. H. Park, Biochem. J. 468 (3), 435 (2015).CrossRefGoogle Scholar
  33. 33.
    A. C. Nulton-Persson, L. I. Szweda, and H. A. Sadek, J. Cardiovasc. Pharmacol. 44 (5), 591 (2004).CrossRefGoogle Scholar
  34. 34.
    H. Raza, A. John, and S. Benedict, Eur. J. Pharmacol. 668 (1–2), 15 (2011).Google Scholar
  35. 35.
    T. Tomoda, K. Takeda, T. Kurashige, et al., Liver 14 (2), 103 (1994).CrossRefGoogle Scholar
  36. 36.
    K. W. Oh, T. Qian, D. A. Brenner, et al., Toxicol. Sci. 73 (1), 44 (2003).CrossRefGoogle Scholar
  37. 37.
    X. Wang, A. Shojaie, Y. Zhang, et al., PLoS One 12 (5), e0178444 (2017).CrossRefGoogle Scholar
  38. 38.
    N. I. Fedotcheva, V. V. Teplova, and N. V. Beloborodova, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 4 (1), 50 (2010).Google Scholar
  39. 39.
    N. I. Fedotcheva, V. V. Teplova, and N. V. Beloborodova, Biophysics (Moscow) 57 (5), 634 (2012).CrossRefGoogle Scholar
  40. 40.
    V. T. Vachharajani, T. Liu, X. Wang, et al., J. Immunol. Res. 6, 8167273 (2016).Google Scholar
  41. 41.
    T. F. Liu, V. T. Vachharajani, B. K. Yoza, et al., J. Biol. Chem. 287 (31), 25758 (2012).CrossRefGoogle Scholar
  42. 42.
    A. E. Pegg, Am. J. Physiol. Endocrinol. Metab. 294 (6), E995 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. I. Fedotcheva
    • 1
    • 2
  • M. N. Kondrashova
    • 1
  • E. G. Litvinova
    • 1
  • M. V. Zakharchenko
    • 1
  • N. V. Khunderyakova
    • 1
  • N. V. Beloborodova
    • 2
  1. 1.Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchinoRussia
  2. 2.Negovsky Scientific Research Institute of General Reanimatology, Federal Research Clinical Center for Reanimatology and RehabilitationMoscowRussia

Personalised recommendations