Advertisement

Biophysics

, Volume 63, Issue 5, pp 751–762 | Cite as

Biosynthesis of AgNPs in Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) (P-AgNPs) Using the Endophytic Fungus Fusarium solani Isolated from an Endangered Medicinal Plant Plumbago rosea and Their Anti Bacterial and Anticancer Activity on Human Breast Cancer Cells (MCF-7)

  • T. J. Sales
  • P. P. Clarance
  • L. J. Lalitha
  • S. Nehru
  • P. Agastian
CELL BIOPHYSICS

Abstract—Among the most hopeful biomaterials, metallic nanoparticles with antibacterial and anticancer properties are expected to open new avenues to fight and prevent various cancer and infectious diseases. The aim of the current study was the biosynthesis of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone-AgNPs (P-AgNPs) using the endophytic fungus Fusarium solani isolated from an endangered medicinal plant Plumbago rosea. The fungus was identified according to its morphological characteristics and nuclear ribosomal DNA ITS sequence analysis. The synthesized P-AgNPs were initially noticed through visual color change from yellow to reddish brown and further confirmed by surface plasmonic resonance (SPR) band at 450 nm using UV-visible spectroscopy. Fourier transform infrared (FTIR) analysis showed amines and amides that are responsible for the stabilization of P-AgNPs. High-resolution scanning electron microscopy (HRSEM) showed that P-AgNPs were well dispersed, spherical, and well within the range of 23.2, 33.2 and 33.7 nm. X-ray diffraction (XRD) study revealed crystalline nature of P-AgNPs. These P-AgNPs displayed good antibacterial activity in dose dependant manner. The synthesized P-AgNPs exhibited dose-depended cytotoxicity against MCF-7 human breast cancer cells, the inhibitory IC50 were found to be 14.5 μg/mL. These nanoparticles were further studied for their anticancer activity and showed high selective toxicity against the MCF-7 breast cancer cell line. The anticancer activity also executed through inhibiting the cells at the phase DNA synthesis.

Keywords: Plumbago rosea Fusarium solani, AgNPs Antibacterial activity cytotoxicity assay 

Notes

ACKNOWLEDGMENTS

The authors are thankful to The Times of India funding agency and Loyola College, Chennai for providing financial assistance (4LCTOI114PBB002).

REFERENCES

  1. 1.
    U. Kreibig and M. Vollmer, in Optical Properties of Metal Clusters (Springer, Berlin, 1995), pp. 483–525.CrossRefGoogle Scholar
  2. 2.
    V. R. Netala, M. S. Bethu, B. Pushpalatha, et al., Int. J. Nanomedicine 11, 5683 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Gratzel, Nature 414, 338 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Shiraishi and N. Toshima, J. Mol. Catal. A 141, 187 (1999).CrossRefGoogle Scholar
  5. 5.
    D. A. Groneberg, M. Giersig, T. Welte, and U. Pison, Curr. Drug Targets 7, 643 (2006).CrossRefGoogle Scholar
  6. 6.
    G. S. Rathna, A. Elavarasi, S. Peninal, et al., Int. J. Pharm. Biol. Arch. 4, 481 (2013).Google Scholar
  7. 7.
    A. Ingle, A. Gade, S. Pierrat, et al., Curr. Nano 4, 141 (2008). http://dx.doi.org/. doi 10.2174/ 157341308784340804CrossRefGoogle Scholar
  8. 8.
    I. Ingle, A. Gade, M. Bawaskar, and M. Rai, J. Nanopart. Res. 11, 2079 (2011). http://dx.doi.org/. doi 10.1007/s11051-008-9573-y.CrossRefGoogle Scholar
  9. 9.
    A. K. Gade, P. Bonde, A. P. Ingle, et al., J. Biobased. Mater. Bio. 2, 243 (2008). http://dx.doi.org/. doi 10.1166/JPMB.2008.401CrossRefGoogle Scholar
  10. 10.
    M. Gajbhiye, J. Kesharwani, A. Ingle, et al., Nanomedicine: Nanotech. Biol. Med. 5, 382 (2009). http://dx.doi.org/. doi 10.1016/j.nano.2009.06.005Google Scholar
  11. 11.
    M. Bawaskar, S. Gaikwad, A. Ingle, et al., Curr. Nanosci. 6, 376 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. Ashkenazi and V. M. Dixit, Science 281, 1305 (1998).CrossRefGoogle Scholar
  13. 13.
    A. Ashkenazi, Nat. Rev. Cancer 2, 420 (2002).CrossRefGoogle Scholar
  14. 14.
    S. A. Susin, H. K. Lorenzo, N. Zamzami, et al., Nature 397, 441 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    J. C. Lee, E. Lobkovsky, N. B. Pliam, et al., J. Org. Chem. 60, 7076 (1995).CrossRefGoogle Scholar
  16. 16.
    J. Y. Li and G. A. Phytochemistry 57, 261 (2001).CrossRefGoogle Scholar
  17. 17.
    S. S. Sardul, K. Suneel, and P. A. Ravindra, Inter. J. Res. Pharm. Chem. 4, 611 (2014).Google Scholar
  18. 18.
    S. Dattu, R. Vandana, N. Shivaraj, et al., Bioinorg. Chem. Appl. 7, 1 (2013).Google Scholar
  19. 19.
    C. H. Ramamurthy, M. Padma, I. D. Samadanam, et al., Colloids Surf. B: Biointerfaces 102, 808 (2013).CrossRefGoogle Scholar
  20. 20.
    V. R. Netala, M. S. Bethu, B. Pushpalatha, et al., Int. J. Nanomed. 11, 5683 (2016).CrossRefGoogle Scholar
  21. 21.
    A. R. Bindu, J. Rosemary, and S. Akhila, Int. J. Pharm. Pharm. Sci. 6, 581 (2014).Google Scholar
  22. 22.
    C. Sunil, S. Ignacimuthu, and P. Agastian, J. Ethnopharmacol. 134, 298 (2011).CrossRefGoogle Scholar
  23. 23.
    L. Glorybal, K. B. Kannana, M. V. Arasu, et al., Ann. Clin. Microbiol. Antimicrob. 14, 1 (2015).CrossRefGoogle Scholar
  24. 24.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
  25. 25.
    H. F. Hsu, K. H. Huang, K. J. Lu, et al., J. Ethnopharmacol. 135, 492 (2011).CrossRefGoogle Scholar
  26. 26.
    M. H. Abdolmohammedi, S. H. Fouladdel, A. Shafiee, et al., DARU J. Pharm. Sci. 16, 112 (2008).Google Scholar
  27. 27.
    H. F. Liao, Y. J. Chen, C. H. Chou, et al., Toxicol. in Vitro, 25, 206 (2011).CrossRefGoogle Scholar
  28. 28.
    M. Lanzino, D. Sisci, C. Morelli, et al., Nucleic Acids Res. 38 (16), 5351 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. J. Sales
    • 1
  • P. P. Clarance
    • 1
  • L. J. Lalitha
    • 1
  • S. Nehru
    • 1
  • P. Agastian
    • 1
  1. 1.Ethnopharmacology and Microbial Biotechnology Research Unit, Department of Plant biology and Biotechnology Loyola CollegeChennai Tamil NaduIndia

Personalised recommendations