Advertisement

Biophysics

, Volume 63, Issue 5, pp 663–668 | Cite as

Redox Reactions in Chromium-Containing Fixatives for Biological Materials

  • A. Yu. BudantsevEmail author
  • V. P. Kutyshenko
MOLECULAR BIOPHYSICS
  • 4 Downloads

Abstract—A study of redox reaction kinetics in chromium-containing fixatives (mixtures of chromic acid, bichromate, formaldehyde, and acetic acid) showed that these fixatives were unstable chemical mixtures characterized by rapid kinetics of redox processes. Therefore, biological material fixation occurs in a non-stationary solution of a variable composition, including chromic acid, bichromates (chromium(VI)), formaldehyde, acetic acid, formic acid, and chromium(III) acetate. We propose the division of chemical fixation in these fixatives into two successive stages (“two-step fixation protocol”): the tissue is fixed in an acetic acid–formaldehyde mixture (a rapidly penetrating fixing mixture) at the first stage and washed thoroughly, and treated by the mordant for the staining at the second stage. Such a protocol will at least preserve the original composition of chromium-containing fixatives.

Keywords: redox reactions chromic acid formaldehyde acetic acid spectral methods methods of electrochemical analysis 

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project no. 14-08-00-295).

REFERENCES

  1. 1.
    J. Baker, Principles of Biological Microtechnique. A Study of Fixation and Dyening (Wiley, New York, 1958).Google Scholar
  2. 2.
    W. Flemming, Archiv Mikrosk. Anat. 16, 302 (1879).CrossRefGoogle Scholar
  3. 3.
    F. Sanfelice, Ann. Inst. Pasteur 32 (8), 363 (1918).Google Scholar
  4. 4.
    A. Yu. Budantsev, J. Anal. Chem. 71 (9), 888 (2016).CrossRefGoogle Scholar
  5. 5.
    W. G. B. Casselman, Q. J. Microsc. Sci. 96 (2), 203 (1955).Google Scholar
  6. 6.
    W. G. B. Casselman, Q. J. Microsc. Sci. 96 (2), 223 (1955).Google Scholar
  7. 7.
    A. K. Lavrukhina and L. V. Yukina, Analytical Chemistry of Chromium (Nauka, Moscow, 1979) [in Russian].Google Scholar
  8. 8.
    M. I. Rud’, E. G. Gaevoi, R. S. Magadov, et al., RF Inventor’s Certificate No. 2186030 (2002).Google Scholar
  9. 9.
    V. M. Ivanov, Ya. I. Shcherbakova, and V. N. Figu-rovskaya, Moscow Univ. Chem. Bull. 66 (6), 340 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Yu. Budantsev, Histological Processing (Nauka, Moscow, 2015) [in Russian].Google Scholar
  11. 11.
    C. Zirkle, Protoplasma 4, 201 (1928a).CrossRefGoogle Scholar
  12. 12.
    C. Zirkle, Bot. Gas. 86, 402 (1928b).CrossRefGoogle Scholar
  13. 13.
    C. Zirkle, Protoplasma 5, 511 (1929).CrossRefGoogle Scholar
  14. 14.
    J. A. Kiernan, Histochem. J. 17, 1131 (1985).CrossRefGoogle Scholar
  15. 15.
    G. A. Levitskii, Tr. Prikl. Bot. Genet. Selekts. 27 (1), 175 (1931).Google Scholar
  16. 16.
    M. S. Navashin, Methods of Cytological Analysis for the Purposes of Selection, 2nd ed. (Sel’khozgiz, Moscow, 1936) [in Russian].Google Scholar
  17. 17.
    M. S. Navashin and E. N. Gersimova-Navashina, Bot. Zh., 43, 167 (1958).Google Scholar
  18. 18.
    R. P. Barykina, T. D. Veselova, A. G. Devyatov, et al., Handbook of Botanical Microtechnique: Principles and Methods (Moscow State Univ., Moscow, 2004) [in Russian].Google Scholar
  19. 19.
    G. P. Berlyn and J. P. Miksche, Botanical Microtechnique and Histochemistry (Iowa State Univ. Press, Ames, IA, 1976).Google Scholar
  20. 20.
    B. N. Melnikov and G. I. Vinogradova, The Use of Dyes (Khimiya, Moscow, 1986) [in Russian].Google Scholar
  21. 21.
    J. D. Bancroft and A. Stevens, Theory and Practice of Histological Techniques (Churchill Livingstone, Edinburg, 1977).Google Scholar
  22. 22.
    W. T. Dempster, Am. J. Anat. 107, 59 (1960).CrossRefGoogle Scholar
  23. 23.
    D. Hopwood, Histochem. J. 1, 323 (1969).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchinoRussia

Personalised recommendations