Advertisement

Biophysics

, Volume 63, Issue 5, pp 814–819 | Cite as

The Influence of Hypoxic Hypoxia on the Human Ability to Identify Smells

  • E. V. Bigdaj
  • E. A. Bezgacheva
  • V. O. Samojlov
  • Y. N. Korolyev
COMPLEX SYSTEMS BIOPHYSICS

Abstract—The data on the influence of hypoxic hypoxia on the human ability to identify smells are presented. The study was conducted in male volunteers aged from 18 to 20 years without ENT disorders with low tolerance to hypoxia under the supervision of a physician. The University of Pennsylvania Smell Identification Test adapted for Russians was used to evaluate the ability to identify smells. Hypoxic hypoxia was simulated by breathing with a gas mixture containing 10.5% oxygen. The oxygen level in the blood was monitored by the degree of hemoglobin oxygenation measured with a digital portable pulse oximeter. The results of the study indicate that the human ability to identify smells is disturbed under a low concentration of oxygen in inhaled air (p ≤ 0.01). Such a reduction in olfactory memory may indicate a worsening of cognitive functions of the brain under acute hypoxic hypoxia in humans.

Keywords: hypoxic hypoxia olfaction smell identification olfactory testing 

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Program of State Academies of Science for Basic Research in 2014–2020 (GP-14, Section 63).

REFERENCES

  1. 1.
    V. K. Shepeleva, Essays on the Functional Properties of Analyzers in Wild Mammals (Nauka, 1971) [in Russian].Google Scholar
  2. 2.
    B. Atanasova, J. Graux, W. El Hage, et al., Neurosci. Biobehav. Rev. 32 (7), 1315 (2008).CrossRefGoogle Scholar
  3. 3.
    B. I. Turetsky and P. J. Moberg, Am. J. Psychiatry 166 (2), 226 (2009).CrossRefGoogle Scholar
  4. 4.
    R. S. Herz and T. Engen, Psychon. Bull. Rev. 3 (3), 300 (1996).CrossRefGoogle Scholar
  5. 5.
    L. Sela and N. Sobel, Exp. Brain Res. 205 (1), 13 (2010).CrossRefGoogle Scholar
  6. 6.
    P. E. Gilbert, E. Pirogovsky, A. M. Brushfield, et al., Ann. N. Y. Acad. Sci. 1170 (1), 718 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    T. Acker and H. Acker, J. Exp. Biol. 207 (18), 3171 (2004).CrossRefGoogle Scholar
  8. 8.
    C. Peers, H. A. Pearson, and J. P. Boyle, Essays Biochem. 43, 153 (2007).CrossRefGoogle Scholar
  9. 9.
    G. J. Chen, J. Xu, S. A. Lahousse, et al., J. Alzheimer’s Dis. 5 (3), 209 (2003).CrossRefGoogle Scholar
  10. 10.
    P. Grammas, D. Tripathy, A. Sanchez, et al., Int. J. Clin. Exp. Pathol. 4 (6), 616 (2011).Google Scholar
  11. 11.
    O. Alaoui-Ismaili, E. Vernet-Maury, A. Dittmar, et al., Chem. Senses 22 (3), 237 (1997).CrossRefGoogle Scholar
  12. 12.
    P. M. Vernetti, M. Rossi, D. Cerquetti, et al., Chem. Senses 41 (1), 77 (2015).CrossRefGoogle Scholar
  13. 13.
    F. R. Schab, Psychol. Bull. 109 (2), 242 (1991).CrossRefGoogle Scholar
  14. 14.
    R. L. Doty, P. Shaman, and M. Dann, Physiol. Behav. 32 (3), 489 (1984).CrossRefGoogle Scholar
  15. 15.
    W. Ormel, C. De Graaf, F. Rousseau, et al., Rhinology 41, 141 (2003).Google Scholar
  16. 16.
    K. P. Ivanov and Yu. Ya. Kislyakov, Brain Energy Requirements and Oxygen Supply: Experimental and Mathematical Study (Nauka, Leningrad, 1979) [in Russian].Google Scholar
  17. 17.
    S. C. Hand and I. Hardewig, Annu. Rev. Physiol. 58 (1), 539 (1996).CrossRefGoogle Scholar
  18. 18.
    P. H. Donohoe, T. G. West, and R. G. Boutilier, J. Exp. Biol. 203 (2), 405 (2000).Google Scholar
  19. 19.
    J. W. Lazarewicz, Acta Neurobiol. Exp. 56, 299 (1996).Google Scholar
  20. 20.
    O. B. Paulson, S. G. Hasselbalch, E. Rostrup, et al., J. Cereb. Blood Flow Metab. 30 (1), 2 (2010).CrossRefGoogle Scholar
  21. 21.
    D. Lyons, Doctoral Dissertation (Université Pierre et Marie Curie-Paris V, 2015).Google Scholar
  22. 22.
    M. Sharan, E. P. Vovenko, A. Vadapalli, et al., J. Cereb. Blood Flow Metab. 28 (9), 1597 (2008).CrossRefGoogle Scholar
  23. 23.
    E. V. Bigdaj, E. A. Bezgacheva, V. O. Samojlov, and Y. N. Korolyev, Biophysics (Moscow) 63 (3), 463 (2018).CrossRefGoogle Scholar
  24. 24.
    J. A. Ship, J. D. Pearson, L. J. Cruise, et al., J. Gerontol. 51 (2), 86 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Bigdaj
    • 1
  • E. A. Bezgacheva
    • 1
  • V. O. Samojlov
    • 1
  • Y. N. Korolyev
    • 2
  1. 1.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Arktika Research Center, Far East Branch, Russian Academy of SciencesMagadanRussia

Personalised recommendations