Advertisement

Biophysics

, Volume 63, Issue 5, pp 683–693 | Cite as

A Study of the Structure of Trypsin-Like Serine Proteinases: 1. Study of Mini-Plasminogen Activation Using Tryptophan Fluorescence

  • T. I. Belyanko
  • Ya. G. Gursky
  • N. I. Dobrynina
  • A. V. Orlova
  • N. M. Rutkevich
  • L. P. Savochkina
  • A. V. Skamrov
  • N. A. Skrypina
  • R. Sh. BibilashvilliEmail author
MOLECULAR BIOPHYSICS
  • 1 Downloads

Abstract—It has been shown that the curve of the time dependence of tryptophan fluorescence during plasminogen activation by urokinase is well correlated with kinetic curves of activation, which were plotted according to both direct measurements of amidolytic activity of the forming plasmin and the analysis of the plasminogen cleavage products. Three curves represent the intercorrelation within a wide range of the pH and temperature change. We hypothesized that the fluorescence shift is caused by the changes in the Trp215 (Chymotrypsin numbering) side chain environment of activated plasmin. Plasmin activation via proteolytic cleavage of plasminogen induces rotation of the Trp215 side chain with subsequent translocation of the benzene ring of Trp215 from negatively charged (Asp194 and Glu143) to positively charged (Arg175) neighborhood. Our findings show that this rotation is not caused by the indol ring displacement from the substrate recognition pocket, which is provoked by the inhibitor or substrate binding. It has also been demonstrated that the conformation of plasminogen (at least relevant to Trp215 in the substrate recognition pocket) is not sensitive to the pH or temperature changes, while changes in fluorescence spectrum of plasmin correlate with its amidolytic activity.

Keywords: plasminogen tryptophan fluorescence enzyme activation catalytic domain structure-activity relationships of enzyme 

Notes

REFERENCES

  1. 1.
    N. D. Rawlings, M. Waller, A. J. Barrett, and A. Bateman, Nucleic Acids Res. 42, D503 (2014).CrossRefGoogle Scholar
  2. 2.
    R. Huber and W. Bode, Acc. Chem. Res. 11, 114 (1978).CrossRefGoogle Scholar
  3. 3.
    H. Neurath, Science 224, 350 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    L. Hedstrom, Chem. Rev. 102, 4501 (2002).CrossRefGoogle Scholar
  5. 5.
    J. Walter, W. Steigemann, T. P. Singh, et al., Acta Crystallogr. B 38, 1462 (1982).CrossRefGoogle Scholar
  6. 6.
    H. M. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res. 28, 235 (2000).CrossRefGoogle Scholar
  7. 7.
    E. F. Pettersen, T. D. Goddard, C. C. Huang, et al., J. Comput. Chem. 25, 1605 (2004).CrossRefGoogle Scholar
  8. 8.
    D.W. Gohara and E. Di Cera, Trends Biotechnol. 29, 577 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Banerjee, Y. Chisti, and U. C. Banerjee, Biotechnol. Adv. 22, 287 (2004).CrossRefGoogle Scholar
  10. 10.
    M. H. A. Bos and R. M. Camire, J. Coagul. Disord. 2, 19 (2010).Google Scholar
  11. 11.
    M. Dockal, R. Hartmann, M. Fries, et al., J. Biol. Chem. 289, 1732 (2014).CrossRefGoogle Scholar
  12. 12.
    E. Persson, M. Kjalke, and O. H. Olsen, Proc. Natl. Acad. Sci. U. S. A. 98, 13583 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Z. Ohkubo, J. H. Morrissey, and E. Tajkhorshid, J. Thromb. Haemost. 8, 1044 (2010).Google Scholar
  14. 14.
    G. van Dieijen, G. Tans, J. Rosing, and H.C. Hemker, J. Biol. Chem. 256, 3433 (1981).Google Scholar
  15. 15.
    E. J. Duffy and P. Lollar J. Biol. Chem. 267, 7821 (1992). PMID: .1560014Google Scholar
  16. 16.
    J. Rosing, G. Tans, J. Govers-Riemslag, et al., J. Biol. Chem. 255, 274 (1980).Google Scholar
  17. 17.
    W. Li, D. J. Johnson, C. T. Esmon, and J. A. Huntington, Nat. Struct. Mol. Biol. 11, 857 (2004).CrossRefGoogle Scholar
  18. 18.
    Y. Xue, C. Bodin, and K. Olsson, J. Thromb. Haemost. 10, 1385 (2012). doi 10.1111/j.1538-7836.2012.04765.xCrossRefGoogle Scholar
  19. 19.
    E. Peisach, J. Wang, T. de los Santos, et al., Biochemistry 38, 11180.Google Scholar
  20. 20.
    N. Pozzi, Z. Chen, F. Zapata, et al., (2011) Biochemistry 50, 10195 (1999).Google Scholar
  21. 21.
    J. Vijayalakshmi, K. P. Padmanabhan, K. G. Mann, and A. Tulinsky, Prot. Sci. 3, 2254 (1994).CrossRefGoogle Scholar
  22. 22.
    M. A. Parry, C. Fernandez-Catalan, A. Bergner, et al., Nat. Struct. Biol. 5, 917 (1998).CrossRefGoogle Scholar
  23. 23.
    R. H. P. Law, T. Caradoc-Davies, N. Cowieson, et al., Cell Rep. 1, 185 (2012).CrossRefGoogle Scholar
  24. 24.
    X. Wang, X. Lin, J. A. Loy, et al., Science 281, 1662 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    M. Möller and A. Denicola, Biochem. Mol. Biol. Education 30, 175 (2002).Google Scholar
  26. 26.
    J. T. Vivian and P. R. Callis, Biophys. J. 80, 2093 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    N. M. Rutkevich, T. I. Belyanko, Ya. G. Gursky, et al., Biotekhnologiya 3, 41 (2014).Google Scholar
  28. 28.
    Ya. G. Gursky, M. M. Minashkin, E. S. Feoktistova, et al., Biotekhnologiya 1, 25 (2010).Google Scholar
  29. 29.
    R. Sh. Bibilashvili, A. A. Belogurov, Ya. G. Gursky, et al., RF Patent No. 2432396 (2009).Google Scholar
  30. 30.
    R. Sh. Bibilashvili, A. A. Belogurov, Ya. G. Gursky, et al., RF Patent No. 2432397 (2009).Google Scholar
  31. 31.
    A. Ya. Shevelev, T. N. Barshevskaya, A. A. Belogurov, et al., Mol. Biol. (Moscow) 20, 778 (1986).Google Scholar
  32. 32.
    E. A. Burstein, N. S. Vedenkina, and M. N. Ivkova, J. Photochem. Photobiol. 18, 263 (1973).CrossRefGoogle Scholar
  33. 33.
    K. C. Robbins, L. Summaria, and R. C. Wohl, Methods Enzymol. 80, 379 (1981).CrossRefGoogle Scholar
  34. 34.
    P. D. Boxrud, W. P. Fay, and P. E. Bock, J. Biol. Chem. 275, 14579 (2000).CrossRefGoogle Scholar
  35. 35.
    X. Lin, Y. Wang, Y. Zhang, et al., Thrombosis J. 11, 2 (2013).CrossRefGoogle Scholar
  36. 36.
    B. Noppen, L. Fonteyn, F. Aerts, et al., Prot. Eng. Des. Select. 27, 215 (2014).CrossRefGoogle Scholar
  37. 37.
    W. D. Cornell, P. Cieplak, C. I. Bayly, et al., J. Am. Chem. Soc. 117, 5179 (1995).CrossRefGoogle Scholar
  38. 38.
    A. L. Hansen and L. E. Kay, Proc. Natl. Acad. Sci. U. S. A. 111, E1705 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    K. C. Haddad, H. Sudmeier, D. A. Bachovchin, and W. W. Bachovchin, Proc. Natl. Acad. Sci. U. S. A. 102, 1006 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    N. E. Mackenzie, J. P. Malthouse, and A. I. Scott, Science 225, 883 (1984). doi 10.1126/science.6433481ADSCrossRefGoogle Scholar
  41. 41.
    W. W. Bachovchin, R. Kaiser, J. H. Richards, and J. D. Roberts, Proc. Natl. Acad. Sci. U. S. A., 78, 7323 (1981).ADSCrossRefGoogle Scholar
  42. 42.
    A. R. Fersht, J. Mol. Biol. 64, 497 (1972).CrossRefGoogle Scholar
  43. 43.
    A. Pasternak, D. Ringe, and L. Hedstrom, Prot. Sci. 8, 253 (1999).CrossRefGoogle Scholar
  44. 44.
    L. Hedstrom, T. Y. Lin, and W. Fast, Biochemistry 35, 4515 (1996).CrossRefGoogle Scholar
  45. 45.
    A. Pasternak, X. Liu, T. Y. Lin, and L. Hedstrom, Biochemistry 37, 16201 (1998).CrossRefGoogle Scholar
  46. 46.
    R. C. Wohl, L. Summaria, and K. C. Robbins, J. Biol. Chem. 255, 2005 (1980).Google Scholar
  47. 47.
    D. Collen, C. H. Zamarron, R. Lijnen, and M. Hoylaerts, J. Biol. Chem. 261, 1259 (1986).Google Scholar
  48. 48.
    H. R. Lijnen, B. Van Hoef, and D. Collen, Biochim. Biophys. Acta 884, 402 (1986).CrossRefGoogle Scholar
  49. 49.
    V. Ellis and K. Dan, J. Biol. Chem. 268, 4806 (1993).Google Scholar
  50. 50.
    J. Wang and E. Reich, Prot. Sci. 4, 1768 (1995).CrossRefGoogle Scholar
  51. 51.
    J. Wang, B. Brdar, and E. Reich, Prot. Sci. 4, 1758 (1995).CrossRefGoogle Scholar
  52. 52.
    P. Franco, M. R. Mastronicola, D. De Cesare, et al., J. Biol. Chem. 267, 9369 (1992).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. I. Belyanko
    • 1
  • Ya. G. Gursky
    • 1
  • N. I. Dobrynina
    • 1
  • A. V. Orlova
    • 1
  • N. M. Rutkevich
    • 1
  • L. P. Savochkina
    • 1
  • A. V. Skamrov
    • 1
  • N. A. Skrypina
    • 1
  • R. Sh. Bibilashvilli
    • 1
    Email author
  1. 1.National Medical Research Center of CardiologyMoscowRussia

Personalised recommendations