Advertisement

Biophysics

, Volume 63, Issue 5, pp 735–742 | Cite as

A Microfluidic Platform for the Development of a Biosensor Based on Genetically Modified Helicobacter pylori Single Cells

  • A. M. Belova
  • D. V. Basmanov
  • K. A. Prusakov
  • V. N. Lazarev
  • D. V. Klinov
CELL BIOPHYSICS

Abstract—We report a new microfluidic biosensor to detect changes in the transcriptional activity of the single genetically modified cells of the Helicobacter pylori bacterium in response to exogenous factors. A microfluidic chip was used as the basis for the development of the biosensor, in which the channel wall surface was modified to provide effective cell immobilization and maintenance of cell viability. In order to demonstrate the efficiency of the biosensor, the changes in the fluorescence of the GFP protein, the gene of which was under the control of the pH-dependent virulence genes of H. pylori, in response to acidic stress, were registered. The developed microfluidic biosensor may be used not only for the basic microbiological research, but also for the diagnostics of different pathological states.

Keywords: microfluidic chip biosensors cell immobilization Helicobacter pylori gene expression single cell research 

Notes

ACKNOWLEDGMENTS

The authors thank O. V. Podgornyi (Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of Russia, Russia, Moscow) for valuable recommendations and discussions.

This study was supported by the Russian Science Foundation, project no. 17-75-30064.

REFERENCES

  1. 1.
    S. Cookson, N. Ostroff, W. L. Pang, et al., Mol. Syst. Biol. 1 (1), 2005.0024 (2005). doi 10.1038/msb4100032Google Scholar
  2. 2.
    D. Longo and J. Hasty, Mol. Syst. Biol. 2 (1), 64 (2006). doi 10.1038/msb4100110CrossRefGoogle Scholar
  3. 3.
    K. J. Wieder, K. R. King, D. M. Thompson, et al., Biomed. Microdevices 7 (3), 213 (2005).CrossRefGoogle Scholar
  4. 4.
    B. Kuswandi, B. Nuriman, J. Huskens, and W. Verboom, Anal. Chim. Acta 601 (2), 141 (2007).CrossRefGoogle Scholar
  5. 5.
    T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77 (3), 977 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    E. K. Sackmann, A. L. Fulton, and D. J. Beebe, Nature 507 (7491), 181 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    D. Mark, S. Haeberle, G. Roth, et al., NATO Sci. Peace Secur. Ser. A. Chem. Biol., No. 3, 305 (2010).Google Scholar
  8. 8.
    J. Zhang, S. Yan, D. Yuan, et al., Lab. Chip 16 (1), 10 (2016).CrossRefGoogle Scholar
  9. 9.
    B. J. Marshall and J. R. Warren, Lancet 323 (8190), 1311 (1984). doi 10.1016/S0140-6736(84)91816-6CrossRefGoogle Scholar
  10. 10.
    British Society of Gastroenterologists. Patient information: Helicobacter pylori. http://www.bsg.org.uk.Google Scholar
  11. 11.
    M. F. Loughlin, Expert Opin. Ther. Targets 7, 725 (2003). doi 10.1517/14728222.7.6.725CrossRefGoogle Scholar
  12. 12.
    M. J. Blaser, Eur. J. Gastroenterol. Hepatol. 24 (Suppl. 1), S3 (2012).CrossRefGoogle Scholar
  13. 13.
    J. A. Carroll, P. E. Stewart, P. Rosa, et al., Microbiology 149 (7), 1819 (2003).CrossRefGoogle Scholar
  14. 14.
    C. Josenhans, S. Friedrich, and S. Suerbaum, FEMS Microbiol. Lett. 161, 263 (1998).CrossRefGoogle Scholar
  15. 15.
    Yi. Wang, K. P. Ross, and D. E. Taylor, J. Gen. Microbiol. 139 (10), 2485 (1993). doi 10.1099/00221287-139-10-2485CrossRefGoogle Scholar
  16. 16.
    D. Heuermann and R. Haas, Mol. Gen. Genet. 257, 519 (1998).CrossRefGoogle Scholar
  17. 17.
    A. Danielli, G. Amore, and V. Scarlato, PLoS Pathog. 6 (6), e1000938 (2010).CrossRefGoogle Scholar
  18. 18.
    W. J. R. Longabaugh, E. H. Davidson, and H. Bolouri, Biochim. Biophys. Acta 1789 (4), 363 (2009).CrossRefGoogle Scholar
  19. 19.
    C. Josenhans, A. Labigne, and S. Suerbaum, J. Bacteriol. 177 (11), 3010 (1995).CrossRefGoogle Scholar
  20. 20.
    J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, 1989).Google Scholar
  21. 21.
    A. Yilmaz, H. I. Onen, E. Alp, and S. Menevse, in Polymerase Chain Reaction, Ed. by P. Hernandez-Rodriguez and A. P. R. Gomez (InTech, 2012), pp. 239–254.Google Scholar
  22. 22.
    D. R. Scott, E. A. Marcus, D. L. Weeks, and G. Sachs, Gastroenterology 123 (1), 187 (2002).CrossRefGoogle Scholar
  23. 23.
    D. Pribnow, J. Mol. Biol. 99, 419 (1975).CrossRefGoogle Scholar
  24. 24.
    M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Science 297, 1183 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    J. M. Raser and E. K. O’Shea, Science 309 (5743), 2010 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    S. Cookson, N. Ostroff, W. L. Pang, et al., Mol. Syst. Biol. 1, 2005.0024 (2005).Google Scholar
  27. 27.
    F. K. Balagadde, L. You, C. L. Hansen, et al., Science 309 (5731), 137 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    O. Tatarinova, V. Tsvetkov, D. Basmanov, et al., PLoS One 9 (2), e89383 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    M. Prokofjeva, V. Tsvetkov, D. Basmanov, et al., Nucleic Acid Ther. 27 (1) (2017).Google Scholar
  30. 30.
    J. Seo, H. Do, C. Park, et al., Korean J. Gastroenterol. 61 (4), 191 (2013).CrossRefGoogle Scholar
  31. 31.
    G. Zanotti and L. Cendron, IUBMB Life 62 (10), 715 (2010).CrossRefGoogle Scholar
  32. 32.
    Y. Wen, E. A. Marcus, U. Matrubutham, et al., Infect. Immun. 71 (10), 5921 (2003).CrossRefGoogle Scholar
  33. 33.
    M. Pflock, S. Kennard, N. Finsterer, and D. Beier, J. Biotechnol. 126 (1), 52 (2006).CrossRefGoogle Scholar
  34. 34.
    R. Willen, B. Carlen, X. Wang, et al., Upsala J. Med. Sci. 105, 31 (2000).CrossRefGoogle Scholar
  35. 35.
    M. Pflock, S. Kennard, I. Delany, et al., Infect. Immun. 73, 6437 (2005).CrossRefGoogle Scholar
  36. 36.
    K. Vogt and H. Harm, Zbl. Bakt. 275, 63 (1991).CrossRefGoogle Scholar
  37. 37.
    J. A. Garner and T. L. Cover, J. Infect. Dis. 172 (1), 290 (1995).CrossRefGoogle Scholar
  38. 38.
    M. H. Forsyth, J. C. Atherton, M. J. Blaser, and T. L. Cover, Infect. Immun. 66 (7), 3088 (1998).Google Scholar
  39. 39.
    G. Ayala, L. Chihu, G. Perales, et al., Microb. Pathog. 37, 163 (2004).CrossRefGoogle Scholar
  40. 40.
    T. Bischler, H. S. Tan, K. Nieselt, and C. M. Sharma, Methods 86, 89 (2015).CrossRefGoogle Scholar
  41. 41.
    A. J. Westermann, K. U. Förstner, F. Amman, et al., Nature 529 (7587), 496 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    M. A. Collart and H. Th. M. Timmers, Prog. Nucleic Acid Res. Mol. Biol. 77, 289 (2004).CrossRefGoogle Scholar
  43. 43.
    J. K. Akada, M. Shirai, H. Takeuchi, et al., Mol. Microbiol. 36 (5), 1071 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. M. Belova
    • 1
  • D. V. Basmanov
    • 1
  • K. A. Prusakov
    • 1
  • V. N. Lazarev
    • 1
  • D. V. Klinov
    • 1
  1. 1.Federal Research Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency of RussiaMoscowRussia

Personalised recommendations