Advertisement

Biophysics

, Volume 63, Issue 4, pp 611–620 | Cite as

A Study of the State of Photosynthetic Pigments of Hybrid Maize Seeds Exposed to Ultraviolet and Radiation

  • O. V. Slatinskaya
  • F. F. Protopopov
  • N. Kh. Seifullina
  • D. N. MatorinEmail author
  • C. N. RadenovicEmail author
  • V. V. ShutovaEmail author
  • G. V. MaksimovEmail author
COMPLEX SYSTEMS BIOPHYSICS
  • 79 Downloads

Abstract—We investigated the state of the pigments of inbred (zpp1225) and hybrid (zp341) maize (Zea mays L.) seeds exposed to ultraviolet radiation and α-irradiation using spectral methods. Exposure to different ultraviolet radiation doses from 5 to 13.39 kJ/m2 and α-irradiation from 1.5 to 3 kGy stimulated plant growth and seed germination. Exposure of seeds to a high dose of α-irradiation (15 kGy) led to inhibition of plant growth and development. Irradiation of seeds can change the state and function of the pigments present in the leaves. Irradiation of seeds induced conformational changes of carotenoid modules (increase of the length of the polyene chain and amount of molecules in 15-cis-conformation); the effect depends on the type of irradiation (the effect was larger when seeds were exposed to α-irradiation). It was shown that the photosynthetic apparatus in hybrid (zp341) maize is characterized by a relatively increased I–P phase on the induction curve of fast fluorescence and a higher degree of oxidation of the P700 reaction center, indicating a higher acceptor pool on the acceptor side of the photosystem I in the hybrid maize. Seed exposure to ultraviolet radiation and α-irradiation caused inhibition of reactions in photosystem II in leaves, observed as a decrease in the quantum yield of electron transport (φEo), an increase of non-photochemical quenching (DI0/RC and φDo) and a decrease of the energy of thylakoid membranes (higher Δψ). The highest decease caused by radiation was determined for the generalized index of photosystem II performance (PIABS). The PIABS production index can be recommended for assessing the status of plants in selection studies.

Keywords: Zea mays L. ultraviolet radiation α-particles carotenoids Raman scattering chlorophyll fluorescence 

Notes

REFERENCES

  1. 1.
    A. P. Maksimenko, Lesn. Khoz. 6, 31 (1997).Google Scholar
  2. 2.
    E. V. Tyutyaev, V. V. Shutova, G. V. Maksimov, et al., Fiziol. Rast. Genet. 47 (2), 147 (2015).Google Scholar
  3. 3.
    A. P. Dubrov, Effects of Ultraviolet Radiation on Plants (Akad. Nauk SSSR, Moscow, 1963) [in Russian].Google Scholar
  4. 4.
    P. R. Carey, Biochemical Applications of Raman and Resonance Raman Spectroscopies (Elsevier, 1982; Mir, Moscow, 1985).Google Scholar
  5. 5.
    D. Lazár and G. Schansker, in Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems, Ed. by A. Laisk, L. Nedbal, and Govindjee (Dordrecht, Springer, 2009), pp. 85–123.Google Scholar
  6. 6.
    R. J. Strasser, et al., Biochim. Biophys. Acta – Bioenerg. 1797 (6–7), 1313 (2010).Google Scholar
  7. 7.
    L. S. Chen, P. Li, and L. Cheng, Environ. Exp. Bot. 66 (1), 110 (2009).CrossRefGoogle Scholar
  8. 8.
    P. Mehta, A. Jajoo, S. Mathur, and S. Bhart, Plant Physiol. Biochem. 48 (1), 16 (2010)CrossRefGoogle Scholar
  9. 9.
    C. Jedmowski, A. Ashoub, and W. Bruggemann, Acta Physiol. Plant. 35 (2), 345 (2013)CrossRefGoogle Scholar
  10. 10.
    A. H. Teramura and J. H. Sullivan, Photosynth. Res. 39 (3), 463 (1994).CrossRefGoogle Scholar
  11. 11.
    S. Kataria, A. Jajoo, and K. N. Guruprasad, J. Photochem. Photobiol. B: Biol. 137, 55 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Ya. Akhalaya, E. N. Goncharenko, and A. A. Baizhumanov, Bull. Exp. Biol. Med. 141 (2), 219 (2006).CrossRefGoogle Scholar
  13. 13.
    V. M. Lebedev, G. V. Maksimov, E. G. Maksimov, et al., Izv. Akad. Nauk, Ser. Fiz. 78 (7), 842 (2014).Google Scholar
  14. 14.
    J. Merlin, Pure Appl. Chem. 57, 785 (1985).CrossRefGoogle Scholar
  15. 15.
    V. N. Gol’tsev, M. Kh. Kaladzhi, M. A. Kuzmanova, and S. I. Allakhverdiev, Variable and Delayed Fluorescence of Chlorophyll a: Theoretical Principles and Applications in Plant Research (Institute of Computer Research, Izhevsk, 2014) [in Russian].Google Scholar
  16. 16.
    A. A. Bulychev, V. A. Osipov, D. N. Matorin, and W. J. Vredenberg, J. Bioenerg. Biomembr. 45 (1–2), 37 (2013).Google Scholar
  17. 17.
    R. J. Strasser, M. Tsimilli-Michael, and A. Srivastava, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Ed. by G. C. Papaqeorgiou and Govindjee (Springer, Netherlands, 2004), pp. 321–362.Google Scholar
  18. 18.
    H. M. Kalaji, A. Oukarroum, V. Alexandrov, et al., Plant Physiol. Biochem. 81, 16 (2014).CrossRefGoogle Scholar
  19. 19.
    V. Goltsev, I. Zakharieva, P. Chernev, and R. J. Strasser, Photosynth. Res. 101 (2–3), 217 (2009).Google Scholar
  20. 20.
    A. Oukarroum, V. Goltsev, and R. J. Strasser, PloS One 8 (3), 59433 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    D. N. Matorin and A. B. Rubin, Chlorophyll Fluorescence in Higher Plants and Algae (Institute of Computer Research, Izhevsk, 2012) [in Russian].Google Scholar
  22. 22.
    C. D. Jiang, et al., Photosynthetica 44, 454 (2006).CrossRefGoogle Scholar
  23. 23.
    D. Christen, et al., Environ. Exp. Bot. 60, 504 (2007).CrossRefGoogle Scholar
  24. 24.
    A. Oukarroum, et al., Environ. Exp. Bot. 60, 438 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Biology, Moscow State UniversityMoscowRussia
  2. 2.Maize Research InstituteZemun Polje, BelgradeSerbia
  3. 3.Ogarev National Research Mordovia State UniversitySaranskRussia

Personalised recommendations