Advertisement

Biophysics

, Volume 62, Issue 1, pp 109–114 | Cite as

The effects of KB-R7943, an inhibitor of reverse Na+/Ca2+ exchange, on the force of contraction of papillary muscles in the heart of the ground squirrel Spermophilus undulatus

  • A. S. AverinEmail author
  • L. S. Kosarsky
  • S. V. Tarlachkov
  • V. A. Vekhnik
  • I. V. Averina
  • A. E. Alekseev
  • E. E. Fesenko
  • O. V. Nakipova
Biophysics of Complex Systems
  • 20 Downloads

Abstract

We investigated the effect of KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger, on the force of isometric contractions, the contractile force–frequency relationship and post-rest potentiation (a qualitative parameter of Ca2+ levels in sarcoplasmic reticulum) in the right ventricle papillary muscles isolated from ground squirrel hearts during summer (June, n = 4) and autumn (October, n = 4) activities. In the presence of 1.8 mM Ca2+at 36°C, 1–1.5 hours-long treatment of the summer papillary muscles with KB-R7943 produced no significant effects on the contractile indices at the majority of stimulation frequencies. In the autumn papillary muscles KB-R7943 induced a 40–50% decrease in the force of contraction (negative inotropic effect) at low stimulation frequencies (0.1–0.3 Hz) without any significant effect at higher stimulation frequencies (0.4–3.0 Hz). Furthermore, in this group, KB-R7943 suppressed the post-rest potentiation of contractility by 50 ± 21% at pause durations exceeding 120 s. These observations indicate that KB-R7943 can affect Ca2+ levels in sarcoplasmic reticulum and that Na+/Ca2+ exchange may contribute to the physiological remodeling of intracellular Ca2+ homeostasis in myocardium of hibernating animals prior their transition to a hypometabolic torpid state.

Keywords

heart contractility Na+/Ca2+ exchanger KB-R7943 hibernation ground squirrels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Lederer, E. Niggli, and R. W. Hadley, Science 248, 283 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    M. P. Blaustein and W. J. Lederer, Physiol. Rev. 79, 763 (1999).Google Scholar
  3. 3.
    H. Reuter, C. Pott, J. I. Goldhaber, et al., Cardiovasc. Res. 67, 198 (2005).CrossRefGoogle Scholar
  4. 4.
    M. C. Jordan, S. A. Henderson, T. Han, et al., J. Card. Fail. 16, 786 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Ottolia, N. Torres, J. H. Bridge, et al., J. Mol. Cell. Cardiol. 61, 28–33. (2013).CrossRefGoogle Scholar
  6. 6.
    D. M. Bers, S. Despa, and J. Bossuyt, Ann. N. Y. Acad. Sci. 1080, 165 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Bers and Y. Chen-Izu, J. Physiol. 593 (6), 1327 (2015).Google Scholar
  8. 8.
    G. T. Lines, J. B. Sande, W. E. Louch, et al., Biophys. J. 91, 779 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    P. Neco, B. Rose, N. Huynh, et al., Biophys. J. 99 (3), 755 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    K. R. Sipido, M. Maes, and F. Van de Werf, Circ. Res. 81, 1034 (1997).Google Scholar
  11. 11.
    M. Kohlhaas and C. Maack, Circulation 122 (22), 2273 (2010).CrossRefGoogle Scholar
  12. 12.
    B. Pieske, L. S. Maier, V. Piacentino, et al., Circulation 106, 447 (2002).CrossRefGoogle Scholar
  13. 13.
    S. M. Pogwizd and D. M. Bers, Ann. N. Y. Acad. Sci. 976, 454 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    J. Weisser-Thomas, V. Piacentino, J. P. Gaughan, et al., Cardiovasc. Res. 57 (4), 974 (2003).CrossRefGoogle Scholar
  15. 15.
    N. Bogeholz, L. Eckardt, and C. Pott, Curr. Med. Chem. 21 (11), 1330 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Hagihara, Y. Yoshikawa, Y. Ohga, et al., Am. J. Physiol. Heart Circ. Physiol. 288, H1699 (2005).CrossRefGoogle Scholar
  17. 17.
    K. Imahashi, C. Pott, J. I. Goldhaber, et al., Circ. Res. 97, 916 (2005).CrossRefGoogle Scholar
  18. 18.
    E. Murphy, H. R. Cross, and C. Steenbergen, Ann. N.Y. Acad. Sci. 976, 421 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhang, K. Cheng1, D. Lai, et al., Int. J. Clin. Exp. Pathol. 8 (9),10239 (2015).Google Scholar
  20. 20.
    S. Z. Li, F. Wu, B. Wang, et al., Eur. J. Pharmacol. 561, 14 (2007).CrossRefGoogle Scholar
  21. 21.
    R. A. Bouwman, K. Salic, F. G. Padding, et al., Circulation 4, 114 (2006).Google Scholar
  22. 22.
    C. E. Murry, R. B. Jennings, and K. A. Reimer, Circulation 74, 1124 (1986).CrossRefGoogle Scholar
  23. 23.
    S. A. Afanasiev, E. D. Alekseeva, I. B. Bardamova, and S. A. Bogomaz, Eksp. Klin. Farmakol. 57 (4), 26 (1994).Google Scholar
  24. 24.
    D. M. Yellon and J. M. Downey. Physiol. Rev. 83, 1113 (2003).Google Scholar
  25. 25.
    P. Birinyi, K. Acsai, T. Banyasz, et al., Arch. Pharmacol. 372, 63 (2005).CrossRefGoogle Scholar
  26. 26.
    Y. Watanabe, Y. Koide, and J. Kimura, J. Pharmacol. Sci. 102, 7 (2006).CrossRefGoogle Scholar
  27. 27.
    V. J. Bourgonje, M. A. Vos, S. Ozdemir, et al., Circ. Arrhythm. Electrophysiol. 6 (2), 371 (2013).CrossRefGoogle Scholar
  28. 28.
    C. Pott, L. Eckardt, and J. Goldhaber, Curr. Drug Targets 12 (5), 737 (2011).CrossRefGoogle Scholar
  29. 29.
    H. Reuter, M. P. Blaustein, and G. Haeusler, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 265, 87 (1973).ADSCrossRefGoogle Scholar
  30. 30.
    M. P. Blaustein and C. J. Oborn, J. Physiol. 247, 657 (1975).CrossRefGoogle Scholar
  31. 31.
    T. Iwamoto, T. Watano, M. Shigekawa, J. Biol. Chem. 271, 22391 (1996).CrossRefGoogle Scholar
  32. 32.
    T. Brustovetsky, M. K. Brittain, P. L. Sheets, et al., Br. J. Pharmacol. 162 (1), 255 (2011).CrossRefGoogle Scholar
  33. 33.
    C. F. Niu, Y. Watanabe, K. Ono, et al., Eur. J. Pharmacol. 573,161 (2007)CrossRefGoogle Scholar
  34. 34.
    T. Matsuda, N. Arakawa, K. Takuma, et al., J. Pharmacol. Exp. Ther. 298, 249 (2001).Google Scholar
  35. 35.
    H. Tanaka, K. Nishimaru, T. Aikawa, et al., Br. J. Pharmacol. 135, 1096 (2002).CrossRefGoogle Scholar
  36. 36.
    P. Birinyi, A. Toth, I. Jona, et al., Cardiovasc. Res. 78 (3), 476 (2008).CrossRefGoogle Scholar
  37. 37.
    H. Satoh, K. S. Ginsburg, K. Qing, et al., Circulation 101 (12), 1441 (2000).CrossRefGoogle Scholar
  38. 38.
    O. Yoshitomi, D. Akiyama, T. Hara, et al., J. Anesth. 19 (2), 124 (2005).CrossRefGoogle Scholar
  39. 39.
    H. Cheng, G. L. Smith, J. C. Hancox, and C. H. Orchard, Cell Calcium 49, 56 (2011).CrossRefGoogle Scholar
  40. 40.
    M. S. Amran, N. Homma, and K. Hashimoto, Cardiovasc. Drug Rev. 21, 255 (2003).CrossRefGoogle Scholar
  41. 41.
    Hibernation and Torpor in Mammals and Birds, Ed. by C. P. Lyman, J. S. Willis, A Malan, and L. C. H. Wang (Academic, New York, 1982).Google Scholar
  42. 42.
    L. C. H. Wang, in Advances in Comparative and Environmental Physiology (Springer-Verlag, Berlin, 1988), pp. 1–45.CrossRefGoogle Scholar
  43. 43.
    M. J. Sheriff, C. T. Williams, G. J. Kenagy, et al., J. Comp. Physiol. B. Biochem. Syst. Environ. Physiol. 182, 841 (2012).CrossRefGoogle Scholar
  44. 44.
    Y. Chayama, L. Ando, Y. Tamura, et al., Roy. Soc. Open Sci. 3 (4), 160002 (2016).CrossRefGoogle Scholar
  45. 45.
    O. V. Nakipova, N. M. Zakharova, L. A. Andreeva, et al., Cryobiology 55, 173 (2007).CrossRefGoogle Scholar
  46. 46.
    S. Afanasiev, D. Kondratyeva, S. Popov, and R. Batalov, Pharmacol. Pharmacy 3 (3), 342 (2012).CrossRefGoogle Scholar
  47. 47.
    A. Yatani, S. J. Kim, R. K. Kudej, et al., Am. J. Physiol. Heart Circ. Physiol. 286 (6), H2219 (2004).CrossRefGoogle Scholar
  48. 48.
    X. C. Li, L. Wei, G. Q. Zhang, et al., PLoS ONE 6 (9), e24787 (2011).ADSCrossRefGoogle Scholar
  49. 49.
    A. E. Alekseev, N. I. Markevich, A. F. Korystova, et al., Biophys. J. 70, 786 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    Y. M. Kokoz, A. S. Grichenko, A. F. Korystova, et al., Membr Cell Biol. 14 (2), 277 (2000).Google Scholar
  51. 51.
    U. H. Schroder, J. Breder, C. F. Sabelhaus, et al., Neuropharmacology 38, 319 (1999).CrossRefGoogle Scholar
  52. 52.
    J. Breder, C. F. Sabelhaus, T. Opitz, et al., Neuropharmacology 39, 1779 (2000).CrossRefGoogle Scholar
  53. 53.
    J. Luo, Y. Wang, X. Chen, et al., Ann. N.Y. Acad. Sci. 1099, 292 (2007).ADSCrossRefGoogle Scholar
  54. 54.
    M. Ouardouz, G. W. Zamponi, W. Barr, et al., Neuropharmacology 48, 566 (2005).CrossRefGoogle Scholar
  55. 55.
    G. Barrientos, D. D. Bose, W. Feng, et al., Mol. Pharmacol. 76, 560 (2009).CrossRefGoogle Scholar
  56. 56.
    R. Kraft, Biochem. Biophys. Res. Commun. 361, 230 (2007).CrossRefGoogle Scholar
  57. 57.
    N. Arakawa, M. Sakaue, I. Yokoyama, et al., Biochem. Biophys. Res. Commun. 279, 354 (2000).CrossRefGoogle Scholar
  58. 58.
    J. Santo-Domingo, L. Vay, E. Hernandez-SanMiguel, et al., Br. J. Pharmacol. 151, 647 (2007).CrossRefGoogle Scholar
  59. 59.
    O. V. Nakipova, A. S. Averin, S. V. Tarlachkov, et al., Dokl. Akad. Sci. 451 (5), 581 (2013).Google Scholar
  60. 60.
    M. T. Andrews, Bioassays 29, 431 (2007).CrossRefGoogle Scholar
  61. 61.
    R. L. Russell, P. H. O’Neill, L. E. Epperson, et al., J. Comp. Physiol. 180 (8), 1165 (2010).CrossRefGoogle Scholar
  62. 62.
    C. C. Kurtz, S. L. Lindell, M. J. Mangino, and H. V. Carey, Am. J. Physiol. Gastrointest. Liver Physiol. 291 (5), G895 (2006).CrossRefGoogle Scholar
  63. 63.
    K. R. Grabek, A. Karimpour-Fard, L. E. Epperson, et al., Physiol. Genomics 43, 1263 (2011).CrossRefGoogle Scholar
  64. 64.
    K. Drew, J. Exp. Biol. 216 (6), 927 (2013).CrossRefGoogle Scholar
  65. 65.
    L. Yan, R. K. Kudej, D. E. Vatner, and F. Stephen, 110 (2), 9 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. S. Averin
    • 1
    Email author
  • L. S. Kosarsky
    • 1
  • S. V. Tarlachkov
    • 2
    • 3
  • V. A. Vekhnik
    • 4
  • I. V. Averina
    • 1
  • A. E. Alekseev
    • 5
    • 6
  • E. E. Fesenko
    • 1
  • O. V. Nakipova
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Institute of the Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow oblastRussia
  3. 3.Shemyakin Ovchinnikov Institute of Bioorganic Chemistry (Pushchino Branch)Russian Academy of SciencesPushchino, Moscow oblastRussia
  4. 4.Sprygin Zhiguli State Natural ReserveBakhilova PolyanaZhigulyovsk, Samara RegionRussia
  5. 5.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia
  6. 6.Department of Molecular Pharmacology and Experimental TherapeuticsRochesterUSA

Personalised recommendations