Advertisement

Biophysics

, Volume 61, Issue 6, pp 942–949 | Cite as

Characterization of lipodisc nanoparticles containing sensory rhodopsin II and its cognate transducer from Natronomonas pharaonis

  • D. V. Bagrov
  • N. Voskoboynikova
  • G. A. Armeev
  • W. Mosslehy
  • G. S. Gluhov
  • T. T. Ismagulova
  • A. Y. Mulkidjanian
  • M. P. Kirpichnikov
  • H. -J. Steinhoff
  • K. V. Shaitan
Cell Biophysics

Abstract

We describe the preparation and properties of lipodisc nanoparticles–lipid membrane fragments with a diameter of about 10 nm, stabilized by amphiphilic synthetic polymer molecules. We used the lipodisc nanoparticles made of Escherichia coli polar lipids and compared lipodisc nanoparticles that contained the photosensitive protein complex of the sensory rhodopsin with its cognate transducer from the halobacterium Natronomonas pharaonis with empty lipodisc nanoparticles that contained no protein. The lipodisc nanoparticles were characterized by dynamic light scattering, transmission electron microscopy and atomic force microscopy. We found that the diameter of lipodisc nanoparticles was not affected by incorporation of the protein complexes, which makes them a prospective platform for single-molecule studies of membrane proteins.

Keywords

membrane proteins rhodopsin lipodisc nanoparticles transmission electron microscopy atomic force microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Waldrop, Nature 505, 604 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    J. Hajdu, Curr. Opin. Struct. Biol. 10, 569 (2000).CrossRefGoogle Scholar
  3. 3.
    H. N. Chapman, P. Fromme, A. Barty, et al., Nature 470, 73 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    K. V. Shaitan, M. P. Kirpichnikov, V. S. Lamsin, et al., Vastn. RFFI 4, 38 (2014).Google Scholar
  5. 5.
    A. Deniaud, E. Moiseeva, V. Gordeliy, et al., in Membrane Protein Structure Determination, Ed. by J.-J. Lacapere (Humana Press, 2010), pp. 79–103.Google Scholar
  6. 6.
    V. Cherezov, Curr. Opin. Struct. Biol. 21, 559 (2011).CrossRefGoogle Scholar
  7. 7.
    U. Weierstall, J. C. Spence, and R. B. Doak, Rev. Sci. Instrum. 83, 035108 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    R. Fung, V. Shneerson, D. K. Saldin, et al., Nat. Phys. 5, 64 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Barty, J. Kupper, and H. N. Chapman, Annu. Rev. Phys. Chem. 64, 415 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    K. V. Shaitan, G. A. Armeev and A. K. Shaitan, Biophysics (Moscow) 61 (2), 177 (2016).CrossRefGoogle Scholar
  11. 11.
    J. A. Whiles, R. Deems, R. R. Vold, et al., Bioorg. Chem. 30, 431 (2002).CrossRefGoogle Scholar
  12. 12.
    M. Jamshad, Y. P. Lin, T. J. Knowles, et al., Biochem. Soc. Trans. 39, 813 (2011).CrossRefGoogle Scholar
  13. 13.
    J. Borch and T. Hamann, Biol. Chem. 390, 805 (2009).CrossRefGoogle Scholar
  14. 14.
    T. H. Bayburt and S. G. Sligar, FEBS Lett. 584, 1721 (2010).CrossRefGoogle Scholar
  15. 15.
    M. C. Orwick, P. J. Judge, J. Procek, et al., Angew. Chem. Int. Ed. 51, 4653 (2012).CrossRefGoogle Scholar
  16. 16.
    R. F. Zhang, I. D. Sahu, L. S. Liu, et al., Biochim. Biophys. Acta–Biomembranes 1848, 329 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Li, J. Li, Y. L. Zhuang, et al., Protein Cell 6, 229 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Orwick-Rydmark, J. E. Lovett, A. Graziadei, et al., Nano Lett. 12, 4687 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    D. Yu, Honors Scholar Theses 316 (2013).Google Scholar
  20. 20.
    A. R. Long, C. C. O’Brien, K. Malhotra, et al., BMC Biotechnol. 13 (2013).Google Scholar
  21. 21.
    J. M. Dorr, M. C. Koorengevel, M. Schafer, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 18607 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    T. J. Knowles, R. Finka, C. Smith, et al., J. Am. Chem. Soc. 131, 7484 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Jamshad, V. Grimard, I. Idini, et al., Nano Res. 8, 774 (2015).CrossRefGoogle Scholar
  24. 24.
    E. N. Lyukmanova, Z. O. Shenkarev, A. S. Paramonov, et al., J. Am. Chem. Soc. 130, 2140 (2008).CrossRefGoogle Scholar
  25. 25.
    Z. O. Shenkarev, E. N. Lyukmanova, A. S. Paramonov, et al., J. Am. Chem. Soc. 132, 5628 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Z. Kijac, Y. Li, S. G. Sligar, et al., Biochemistry 46, 13696 (2007).CrossRefGoogle Scholar
  27. 27.
    E. P. Gogol, N. Akkaladevi, L. Szerszen, et al., Prot. Sci. 22, 586 (2013).CrossRefGoogle Scholar
  28. 28.
    I. Orban-Glass, N. Voskoboynikova, K. B. Busch, et al., Biochemistry 54, 349 (2015).CrossRefGoogle Scholar
  29. 29.
    A. Royant, P. Nollert, K. Edman, et al., Proc. Natl. Acad. Sci. U. S. A. 98, 10131 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    H. Luecke, B. Schobert, J. K. Lanyi, et al., Science 293, 1499 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    V. I. Gordeliy, J. Labahn, R. Moukhametzianov, et al., Nature 419, 484 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    J. P. Klare, I. Chizhov, and M. Engelhard, Results Probl. Cell Differ. 45, 73 (2008).CrossRefGoogle Scholar
  33. 33.
    A. A. Wegener, I. Chizhov, M. Engelhard, et al., J. Mol. Biol. 301, 881 (2000).CrossRefGoogle Scholar
  34. 34.
    V. D. Trivedi and J. L. Spudich, Biochemistry 42, 13887 (2003).CrossRefGoogle Scholar
  35. 35.
    I. P. Hohenfeld, A. A. Wegener, and M. Engelhard, FEBS Lett. 442, 198 (1999).CrossRefGoogle Scholar
  36. 36.
    N. Mennes, J. P. Klare, I. Chizhov, et al., FEBS Lett. 581, 1487 (2007).CrossRefGoogle Scholar
  37. 37.
    K. Shimono, M. Iwamoto, M. Sumi, et al., FEBS Lett. 420, 54 (1997).CrossRefGoogle Scholar
  38. 38.
    C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012).CrossRefGoogle Scholar
  39. 39.
    J. Kriegsmann, M. Brehs, J. P. Klare, et al., Biochim. Biophys. Acta 1788, 522 (2009).CrossRefGoogle Scholar
  40. 40.
    C. D. Blanchette, J. A. Cappuccio, E. A. Kuhn, et al., Biochim. Biophys. Acta–Biomembranes 1788, 724 (2009).CrossRefGoogle Scholar
  41. 41.
    T. H. Bayburt, J. W. Carlson, and S. G. Sligar, Langmuir 16, 5993 (2000).CrossRefGoogle Scholar
  42. 42.
    T. H. Bayburt and S. G. Sligar, Proc. Natl. Acad. Sci. USA. 99, 6725 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    H. G. Yuk and D. L. Marshall, Appl. Environ. Microbiol. 69, 5115 (2003).CrossRefGoogle Scholar
  44. 44.
    B. A. Lewis and D. M. Engelman, J. Mol. Biol. 166, 211 (1983).CrossRefGoogle Scholar
  45. 45.
    S. Marchesini, H. He, H. N. Chapman, et al., Phys. Rev. B 68 (2003).Google Scholar
  46. 46.
    S. Gulati, M. Jamshad, T. J. Knowles, et al., Biochem. J. 461, 269 (2014).CrossRefGoogle Scholar
  47. 47.
    V. Postis, S. Rawson, J. K. Mitchell, et al., Biochim. Biophys. Acta–Biomembranes. 1848, 496 (2015).CrossRefGoogle Scholar
  48. 48.
    T. H. Bayburt and S. G. Sligar, Prot. Sci. 12, 2476 (2003).CrossRefGoogle Scholar
  49. 49.
    B. A. Chromy, E. Arroyo, C. D. Blanchette, et al., J. Am. Chem. Soc. 129, 14348 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • D. V. Bagrov
    • 1
  • N. Voskoboynikova
    • 2
  • G. A. Armeev
    • 1
  • W. Mosslehy
    • 2
  • G. S. Gluhov
    • 1
  • T. T. Ismagulova
    • 1
  • A. Y. Mulkidjanian
    • 2
  • M. P. Kirpichnikov
    • 1
  • H. -J. Steinhoff
    • 2
  • K. V. Shaitan
    • 1
  1. 1.Department of bioengineering, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of PhysicsUniversity of OsnabrückOsnabrückGermany

Personalised recommendations