Advertisement

Biophysics

, Volume 61, Issue 4, pp 682–686 | Cite as

Hypofractionated irradiation of the solid form of Ehrlich ascites carcinoma in mice by a thin scanning proton beam

  • V. E. Balakin
  • A. E. Shemyakov
  • S. I. Zaichkina
  • O. M. Rozanova
  • E. N. Smirnova
  • S. P. Romanchenko
  • S. S. Sorokina
  • N. S. Strelnikova
Complex Systems Biophysics

Abstract

The dynamics of the growth of Ehrlich ascites carcinoma in mice of the SHK line exposed to hypofractionated high-dose irradiation by a thin scanning proton beam has been analyzed for different irradiation volumes and different time intervals (from 4 to 24 hours) between two 30-Gy fractions. Irradiation of the gross tumor volume and the planned target volume was performed within the Bragg peak; the energy of protons at the outlet of the accelerator ranged from 85 to 100 MeV. Hypofractionated irradiation of the gross tumor volume of Ehrlich ascites carcinoma resulted in a more pronounced antitumor effect than the irradiation of the planned target volume. The effect did not depend on the interval between the irradiation episodes.

Keywords

hypofractionation scanning pencil beam proton therapy Ehrlich ascites carcinoma mice 

Abbreviations

GTV

gross tumor volume

PTV

planned target volume

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Gulidov, Radiats. Onkol. Yadern. Med. 1 (34), 34 (2013).Google Scholar
  2. 2.
    V. V. Glebovskaya and A. V. Petrovskii, Radiats. Onkol. Yadern. Med. 1 (20), 20 (2014).Google Scholar
  3. 3.
    E. V. Khmelevskii, Radiats. Onkol. Yadern. Med. 1 (28), 28 (2013).Google Scholar
  4. 4.
    H. Suit, Th. DeLaney, S. Goldberg, et al., Radiother. Oncol. 95 (1), 3 (2010). http://www.sciencedirect.com/science/journal/01678140/95/1.CrossRefGoogle Scholar
  5. 5.
    T. Ogata, T. Teshima, K. Kagawa, et al., Cancer Res. 65 (1), 113 (2005).Google Scholar
  6. 6.
    S. Auer, V. Hable, Ch. Greubel, et al., Radiat. Oncol. 6 (1), 139 (2011).CrossRefGoogle Scholar
  7. 7.
    O. Zlobinskaya, S. Girst, C. Greubel, et al., Radiat. Environ. Biophys. 52 (1), 123 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Girst, C. Greube, J. Reind, et al., Radiat. Environ. Biophys. 54 (3), 335 (2015).CrossRefGoogle Scholar
  9. 9.
    K. B. Lee, J. Lee, J. Park, et al., Exp. Mol. Med. 40 (1), 118 (2008).CrossRefGoogle Scholar
  10. 10.
    D. R. Olsen, O. S. Bruland, G. Frykholm, and I. N. Norderhaug, Radiother. Oncol. 83, 123 (2007).CrossRefGoogle Scholar
  11. 11.
    R. Miralbell, S. Roberts, E. Zubizaretta, and J. Hendry, Int. J. Radiat. Oncol. Biol. Phys. 82 (1), 17 (2012).CrossRefGoogle Scholar
  12. 12.
    S. A. Kostromin and E. M. Syresin, Phys. Part. Nucl. Lett. 10 (7), 833 (2013).CrossRefGoogle Scholar
  13. 13.
    G. A. Raskin, R. V. Orlova, A. E. Protasova, et al., Vopr. Onkol. 59 (6), 694 (2013).Google Scholar
  14. 14.
    C. I. Tang, D. A. Loblaw, P. Cheung, et al., Clin. Oncol. 20, 729 (2008).CrossRefGoogle Scholar
  15. 15.
    D. C. Weber, C. Ares, F. Albertini, et al., Pediatr. Blood Cancer (2015). http://onlinelibrary.wiley.com/doi/10.1002/pbc.25864/epdf.Google Scholar
  16. 16.
    Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes (Official Journal of the European Union, L 276, 2010; Rus-LASA, St. Petersbirg, 2012).Google Scholar
  17. 17.
    ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (International Commission on Radiation Units and Measurements, Bethesda, 1999).Google Scholar
  18. 18.
    M. Durante, Br. J. Radiol. 87, 20130626 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Baluchamy, P. Ravichandran, V. Ramesh, et al., Mol. Cell. Biochem. 360 (1–2), 189 (2012).CrossRefGoogle Scholar
  20. 20.
    M. V. Filimonova, S. E. Ul’yanenko, L. I. Shevchenko, et al., Radiats. Biol. Radioekol. 55 (3), 260 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • V. E. Balakin
    • 1
  • A. E. Shemyakov
    • 1
  • S. I. Zaichkina
    • 2
  • O. M. Rozanova
    • 2
  • E. N. Smirnova
    • 2
  • S. P. Romanchenko
    • 2
  • S. S. Sorokina
    • 2
  • N. S. Strelnikova
    • 1
  1. 1.Center of Physics and Technology, Lebedev Institute of PhysicsRussian Academy of SciencesProtvino, Moscow oblastRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations