Advertisement

Biophysics

, Volume 61, Issue 3, pp 470–484 | Cite as

On the self-dependent effect of metal nanoparticles on malignant tumors

  • G. V. Zhukova
  • I. A. Goroshinskaya
  • A. I. Shikhliarova
  • O. I. Kit
  • P. S. Kachesova
  • O. E. Polozhentsev
Complex Systems Biophysics
  • 27 Downloads

Abstract

This review considers the current data on the use of nanoparticles of biogenic metals and their oxides in antineoplastic treatment, the role that the metals play in important regulatory and metabolic processes, their immunotropic effects, and the possible effects on the electromagnetic parameters of cell–cell interactions. Analysis of the available data and original in vivo experimental results indicates that the antitumor potential of these agents is underestimated. Avenues of further research that may contribute to the development of new effective anticancer nanotechnologies are discussed.

Keywords

nanoparticles biogenic metals iron oxides antitumor effect immune cells electromagnetic radiation 

Abbreviations

NP

nanoparticle

EMR

electromagnetic radiation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Brigger, C. Dubernet, and P. Couvreur, Adv. Drug Deliv. Rev. 64, 24 (2012).CrossRefGoogle Scholar
  2. 2.
    M. C. Gonçalves and B. M. Martins, Multifunctional core-shell nanostructures, in Nanomedicine (One Central Press, Manchester, 2014), pp. 83–110.Google Scholar
  3. 3.
    N. Nasongkla, E. Bey, J. Ren, et al., Nano Lett. 6 (11), 2427 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    S. Parveen, R. Misra, and S. K. Sahoo, Nanomedicine 8 (2), 147 (2012).Google Scholar
  5. 5.
    G. Bao, S. Mitragotri, and S. Tong, Annu. Rev. Biomed. Eng. 15, 253 (2013).CrossRefGoogle Scholar
  6. 6.
    S. R. Dave and X. H. Gao, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1 (6), 583 (2009).CrossRefGoogle Scholar
  7. 7.
    V. N. Nikoforov, Izv. Akad. Inzh. Nauk im. A.M. Prokhorova 1, 23 (2013).Google Scholar
  8. 8.
    X. Ren, H. Chen, V. Yang, et al., Front. Chem. Sci. Eng. 8 (3), 253 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Laurent and M. Mahmoudi, Int. J. Mol. Epidemiol. Genet. 2 (4), 367 (2011).Google Scholar
  10. 10.
    A. G. Pershina, A. E. Sazonova, and V. D. Filimonov, Usp. Khim. 83 (4), 299 (2014).CrossRefGoogle Scholar
  11. 11.
    L. Namhey, P. J. Schuck, P. S. Nico, and G. Benjamin, J. Phys. Chem. Lett. 6 (6), 970 (2015).CrossRefGoogle Scholar
  12. 12.
    C. R. Mornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses (Wiley-VCH, Weinheim, 2003).CrossRefGoogle Scholar
  13. 13.
    R. Massart, IEEE Trans. Magn. 2, 1247 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    A. Jordan and K. Maier-Hauff, J. Nanosci. Nanotechnol. 7 (12), 4604 (2007).Google Scholar
  15. 15.
    T. Kobayashi, Biotechnol. J. 6 (11), 1342 (2011).CrossRefGoogle Scholar
  16. 16.
    R. Tietze, J. Zaloga, H. Unterweger, et al., Biochem. Biophys. Res. Commun. 468 (1), 463 (2015).CrossRefGoogle Scholar
  17. 17.
    D. Wang, B. Fei, L. V. Halig, et al., ACS Nano 8 (7), 6620 (2014).CrossRefGoogle Scholar
  18. 18.
    S. J. Seo, J. K. Jeon, E. J. Jeong, et al., J. Cancer Ther. 4 (11A), 25 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Khoei, S. R. Mahdavi, H. Fakhimikabir, Int. J. Radiat. Biol. 90 (5), 351 (2014).CrossRefGoogle Scholar
  20. 20.
    K. Mahmoudi and C. G. Hadjipanayis, Front. Chem. 2, 5 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Sadighian, K. Rostamizadeh, H. Hosseini-Monfared, and M. Hamidi, Colloids Surf. B. Biointerfaces 1 (117). 406 (2014).CrossRefGoogle Scholar
  22. 22.
    M. K. Yu, J. Park, and S. Jon, Theranostics 2 (1), 3 (2012).CrossRefGoogle Scholar
  23. 23.
    V.A. Namiot, Phys. Lett. A. 377, 2796 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    C. Li, C. Ma, F. Wang, Z. Xil, et al., Nanosci. Nanotechnol. 12 (4), 2964 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Kango, S. Kalia, A. Celli, et al., Prog. Polym. Sci. 38 (8), 1232 (2013).CrossRefGoogle Scholar
  26. 26.
    U. Aschauer and A. Selloni, J. Chem. Phys. 143 (4), e:044705 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    S. P. Foy and V. Labhasetwar, Biomaterials 32 (35), 9155 (2011).CrossRefGoogle Scholar
  28. 28.
    N. Singh, G. J. Jenkins, and B. C. Nelson, Biomaterials 33, 163 (2012).CrossRefGoogle Scholar
  29. 29.
    M. Kawanishi, S. Ogo, M. Ikemoto, et al., J. Toxicol. Sci. 38 (3), 503 (2013).CrossRefGoogle Scholar
  30. 30.
    M. Mesárosováa, K. Kozicsa, A. Bábelová, et al., Toxicol. Lett. 226 (3), 303 (2014).CrossRefGoogle Scholar
  31. 31.
    Yu. Totsuka, K. Ishino, T. Kato, et al., Nanomaterials 4 (1), 175 (2014).CrossRefGoogle Scholar
  32. 32.
    X. Huang, Mutat. Res. 533 (1–2), 153 (2003).CrossRefGoogle Scholar
  33. 33.
    A. Kumar and A. Dhawan, Arch. Toxicol. 87 (11), 1883 (2013).CrossRefGoogle Scholar
  34. 34.
    K. R. Di Bona, Y. Xu, P. Ramirez, et al., Reprod. Toxicol. 50, 36 (2014).CrossRefGoogle Scholar
  35. 35.
    C. He, Y. Hu, L. Yin, et al., Biomaterials 31 (13), 3657 (2010).CrossRefGoogle Scholar
  36. 36.
    A. Albanese, P. S. Tang, and W. C. Chan, Annu. Rev. Biomed. Eng. 14, 1 (2012).CrossRefGoogle Scholar
  37. 37.
    J. Zaloga, C. Janko, R. Agarwal, et al., Int. J. Mol. Sci. 16 (5), 9368 (2015).CrossRefGoogle Scholar
  38. 38.
    A. Villanueva, M. Cacete, A. G. Roca, et al., Nanotechnology 20 (11), e115103 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    M. A. Voinov, J. O. Sosa Pagan, E. Morrison, et al., J. Am. Chem. Soc. 133 (1), 35 (2011).CrossRefGoogle Scholar
  40. 40.
    M. I. Khan, A. Mohammad, G. Patil, et al., Biomaterials 33 (5), 1477 (2012).CrossRefGoogle Scholar
  41. 41.
    K. Sinha, J. Das, P. B. Pal, and P. C. Sil, Arch. Toxicol. 87 (7), 1157 (2013).CrossRefGoogle Scholar
  42. 42.
    J. Wu and J. Sun, Nanoelectronics Conference (INEC). doi 10.1109/INEC.2010.5425173Google Scholar
  43. 43.
    A. Muchowicz, M. Firczuk, M. Wachowska, et al., Biochem. Pharm. 93 (4), 418 (2015).CrossRefGoogle Scholar
  44. 44.
    H. Bassiony, S. Sabet, T. A. Salah El-Din, et al., PLOS ONE 9 (11), e111960 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    G. B. Khomutov, Biophysics (Moscow) 49 (1), 128 (2004).Google Scholar
  46. 46.
    A. F. Vanin, Iron Dinitrosyl Complexes with Thiol-containing Ligands: Physicochemistry, Biology, and Medicine (Inst. Comput. Res., Moscow–Izhevsk, 2015) [in Russian].Google Scholar
  47. 47.
    R. L. Elliott and J. F. Head, J. Cancer Ther. 3 (4) 278 (2012).CrossRefGoogle Scholar
  48. 48.
    T. Simonart, BMC Cancer 4 (1), 1 (2004).CrossRefGoogle Scholar
  49. 49.
    D. S. Kalinowski and D. R. Richardson, Pharmacol. Rev. 57 (4), 1 (2005).CrossRefGoogle Scholar
  50. 50.
    M. Cazzola, G. Bergamaschi, L. Dezza, and P. Arosio, Blood 75 (10), 1903 (1990).Google Scholar
  51. 51.
    S. Farnaud and R. W. Evans, Mol. Immunol. 40 (7), 395 (2003).CrossRefGoogle Scholar
  52. 52.
    V. F. Chekhum and S. I. Shpylevaya, Vopr. Onkol. 56 (3), 251 (2010).Google Scholar
  53. 53.
    J. A. Gibbons, R. K Kanwar, and J. R Kanwar, Front Biosci. (Schol. Ed.) 3, 1080 (2011).CrossRefGoogle Scholar
  54. 54.
    Yu. Zhang, C. F. Lima, and L. R. Rodrigues, Nutrition Rev. 72 (12), 763 (2014).CrossRefGoogle Scholar
  55. 55.
    S. S. Ashmawi, H. S. Diab, and E. A. Fahmy, Egypt. J. Chest Dis. Tuberc. 64 (2), 465 (2015).CrossRefGoogle Scholar
  56. 56.
    S. I. Shpylevaya, V. P. Tryndyak, O. Kovalchuk, et al., Breast Cancer Res. Treat. 126 (1), 3 (2011).Google Scholar
  57. 57.
    B. S. Min Pang and J. R. Connor, J. Cancer Sci. Ther. 7 (5), 155 (2015).Google Scholar
  58. 58.
    T. Ganz and E. Nemeth, ASH Education Book 2011 (1), 538 (2011).Google Scholar
  59. 59.
    S. V. Torti and F. M. Torti, Nat. Rev. Cancer 13 (5), 342 (2013).CrossRefGoogle Scholar
  60. 60.
    X.-N. Wu, D. Su, L. Wang, and F.-L. Yu, Eur. J. Cancer Prev. 32 (2), 122 (2014).CrossRefGoogle Scholar
  61. 61.
    D. Xue, C. X. Zhou, Yu. B., et al., Oncol. Lett. 10 (2), 913 (2015).Google Scholar
  62. 62.
    S. V. Torti and F. M. Torti, Cancer Res. 71 (5), 1511 (2011).CrossRefGoogle Scholar
  63. 63.
    J. L. Gu, H. F. Xu, Y. Han, et al., Science China Life Sci. 54 (9), 793 (2011).ADSCrossRefGoogle Scholar
  64. 64.
    A. Laskar, M. Ghosh, S. I. Khattak, et al., Nanomedicine (Lond.) 7 (5), 705 (2012).CrossRefGoogle Scholar
  65. 65.
    S. Osinsky, H. Friess, and P. Vaupel, Tumor Hypoxia in the Clinical Setting (Akademperiodyka, Kiev, 2011).Google Scholar
  66. 66.
    A. N. Belousov, Vestn. Nats. Tekh. Univ. KhPI 47, 9 (2010).Google Scholar
  67. 67.
    L. M. Ali, M. Gutiérrez, R. Cornudella, et al., J. Biomed. Nanotechnol. 9 (7), 1272 (2013).CrossRefGoogle Scholar
  68. 68.
    S. Toraya-Brown, M. R. Sheen, P. Zhang, et al., Nanomedicine 10 (6), 1273 (2014).Google Scholar
  69. 69.
    T. Kobayashi, K. Kakimi, E. Nakayama, and K. Jimbow, Nanomedicine (Lond.) 9 (11), 1715 (2014).CrossRefGoogle Scholar
  70. 70.
    S. Huang, K. Shao, Y. Kuang, et al., Biomaterials 34 (21), 5294 (2013).CrossRefGoogle Scholar
  71. 71.
    G. Song, D. B. Darr, C. M. Santos, et al., Clin. Cancer Res. 20 (23), 6083 (2014).CrossRefGoogle Scholar
  72. 72.
    I. M. Adjei and S. Blanka, J. Funct. Biomater. 6 (1), 81 (2015).CrossRefGoogle Scholar
  73. 73.
    J. L. Beard, J. Nutr. 131 (2S–2), 568 (2001).Google Scholar
  74. 74.
    C. Chang, J. Autoimmunity 34 (3), 234 (2010).CrossRefGoogle Scholar
  75. 75.
    O. B. Belova, Yu. D. Vinnichuk, and N. M. Berezhnaya, Onkologiya 13 (3), 192 (2011).Google Scholar
  76. 76.
    M. I. Dedkova, S. A. Firstov, O. A. Kulikov, and O. V. Minaeva, Zdorov’e i Obrazovanie v XXI Veke 16 (4), 4 (2014).Google Scholar
  77. 77.
    B. A Chen, N. Jin, J. Wang, et al., Int. J. Nanomed. 5, 593 (2010).CrossRefGoogle Scholar
  78. 78.
    C. C. Shen, H. J. Liang, C. C. Wang, et al., Int. J. Nanomed. 6, 2791 (2011).Google Scholar
  79. 79.
    C. C. Shen, C. C. Wang, M. H. Liao, and T. R. Jan, Int. J. Nanomed. 6, 1229 (2011).Google Scholar
  80. 80.
    C. C. Shen, H. J. Liang, C. C. Wang, et al., Int. J. Nanomed. 7, 2729 (2012).Google Scholar
  81. 81.
    U. Keyna, E. Platzer, W. Woith, et al., Eur. J. Haematol. 52 (3), 169 (1994).CrossRefGoogle Scholar
  82. 82.
    J. P. Pinto, V. Dias, H. Zoller, et al., Immunology 130 (2), 217 (2010).CrossRefGoogle Scholar
  83. 83.
    T. Ganz and E. Nemeth, Nature Rev. Immunology 15 (8), 500 (2015).CrossRefGoogle Scholar
  84. 84.
    S. K. Biswas, M. Chittezhath, I. N. Shalova, and J.-Y. Lim, Immunol. Res. 53 (1–3), 11 (2012).CrossRefGoogle Scholar
  85. 85.
    W.-J. Liu, W.-Q. Gao, and X.-N. Kong, J. Shanghai Jiaotong Univ. (Sci.) 19 (6), 646 (2014).CrossRefGoogle Scholar
  86. 86.
    G. Cairo, M. Locati, and A. Mantovani, Haematologica 95 (11), 1 (2010).Google Scholar
  87. 87.
    M. Jung, C. Mertens, and B. Brüne, Immunobiology 220 (2), 295 (2015).CrossRefGoogle Scholar
  88. 88.
    A. A. Alkhateeb, B. Han, and J. R. Connor, Breast Cancer Res. Treat. 137, 733 (2013).CrossRefGoogle Scholar
  89. 89.
    O. R. Colegio, N.-Q. Chu, A. L. Szabo et al., Nature 513 (7519), 559 (2014).ADSCrossRefGoogle Scholar
  90. 90.
    P. Italiani and D. Boraschi, Front. Immunol. 5 (Article 514), 1 (2014).CrossRefGoogle Scholar
  91. 91.
    Y. Okabe and R. Medzhitov, Cell 157 (4), 832 (2014).CrossRefGoogle Scholar
  92. 92.
    M. R. Galdiero, S. K. Biswas, and A. Mantovan, in Macrophages: Biology and Role in the Pathology of Diseases, Ed. by S. K. Biswas and A. Mantovani (Springer, 2014), pp. 37–57.Google Scholar
  93. 93.
    D. Cervia, M. Buldorini, C. Perrotta, and E. Clementi, FASEB J. Suppl. 715, 6 (2012).Google Scholar
  94. 94.
    J. K. Hsiao, H. H. Chu, Y. H. Wang, et al., NMR Biomed. 21 (8), 820 (2008).CrossRefGoogle Scholar
  95. 95.
    O. Lunov, T. Syrovets, B. Buchele, et al., Biomaterials 31 (19), 5063 (2010).CrossRefGoogle Scholar
  96. 96.
    A. Laskar, J. Eilertsen, W. Li, and X. M. Yuan, Biochem. Biophys. Res. Commun. 441 (4), 737 (2013).CrossRefGoogle Scholar
  97. 97.
    A. Awaad and J. Bas, Appl. Zool. 71, 32 (2015).CrossRefGoogle Scholar
  98. 98.
    A. A. Gurvich, The Problem of Mitogenetic Radiation as an Aspect of Molecular Biology (Meditsina, Leningrad, 1968) [in Russian].Google Scholar
  99. 99.
    A. V. Budagovskii, Distant Cell Interaction (NPTTs Tekhnika, Moscow, 2004) [in Russian].Google Scholar
  100. 100.
    V. P. Kaznacheev and L. P. Mikhailova, Ultraweak Radiation in Cell Interactions (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  101. 101.
    H. Frölich, Biological Coherence and Response to External Stimuli (Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
  102. 102.
    F. A. Popp, in A Physicist Ahead of His Time. A Centennial Celebration of His Life and Work, Ed. by G. J. Hyland and P. Rowlands (Univ. of Liverpool Press, Liverpool, 2006).Google Scholar
  103. 103.
    F. A. Popp and W. Klimek, in Biophotonics and Coherent Systems in Biology, Ed. by L. V. Beloussov, V. L. Voeikov, and V. S. Martynyuk (Springer, New York, 2007), pp. 17–32.Google Scholar
  104. 104.
    D. Fels, PLoS ONE 4 (4), e5086 (2009).ADSCrossRefGoogle Scholar
  105. 105.
    L. Beloussov and I. Volodyae, Eur. J. Biophys. 1 (1), 6 (2013).CrossRefGoogle Scholar
  106. 106.
    J. Pokorný, J. Hasek, and F. Jelinek, Electromagn. Biol. Med. 3, 185 (2005).CrossRefGoogle Scholar
  107. 107.
    O. V. Betskii, N. N. Lebedeva, and Yu. G. Yaremenko, Biomed. Radioelektr. 2–4, 20 (2007).Google Scholar
  108. 108.
    S. Sitko, Physics of the Alive 6 (1), 57 (1998).Google Scholar
  109. 109.
    N. N. Lebedeva and O. V. Betskii, Biomed. Radioelektr. 1, 31 (2015).Google Scholar
  110. 110.
    V. F. Kirichuk, M. V. Volin, A. P. Krenitskii, et al. Tsitologiya 43 (12), 1115 (2001).Google Scholar
  111. 111.
    N. I. Sinitsyn, V. I. Petrosyan, and V. A. Elkin, Biomed. Radioelektr. 8, 83 (2000).Google Scholar
  112. 112.
    H. Frölich, IEEE Trans. Microwave Theory Techn. 26 (8), 613 (1978).ADSCrossRefGoogle Scholar
  113. 113.
    J. Pokorný, J. Hasek, J. Vansi, and F. Jelinek, Indian J. Exp. Biol. 46 (5), 310 (2008).Google Scholar
  114. 114.
    M. Takeda, M. Kobayashi, M. Takayama, et al., Cancer Sci. 95 (8), 656 (2004).CrossRefGoogle Scholar
  115. 115.
    V. I. Petrosyan, B. P. Chesnokov, G. E. Brill’, et al. Biomed. Radioelektr. 1, 3 (2014).Google Scholar
  116. 116.
    V. Binghi, Int. J. Radiat. Biol. 84 (7), 569 (2008).CrossRefGoogle Scholar
  117. 117.
    A. N. Belousov, Vestn. Nats. Tekh. Univ. KhPI 47, 9 (2010).Google Scholar
  118. 118.
    L. M. Blinov, Electro- and Magneto-Optics of Liquid Crustals (Nauka, Moscow, 1978) [in Russian].Google Scholar
  119. 119.
    L. A. Blumenfeld and A. N. Tikhonov, Soros. Obraz. Zh. 9, 91 (1997).Google Scholar
  120. 120.
    V. Aristarkhov, Electropmagnetic Diagnosis of Biological Objects [in Russian]. http://zoom.cnews.ru/ rnd/article/ item/sovremennaya_nauka_elektromagnitnaya_ diagnostika_bioobektov. Accessed October 1, 2015.Google Scholar
  121. 121.
    A. B. Gapeyev, E. N. Mikhailik, and N. K. Chemeris, Bioelectromagnetics 29 (3), 197 (2008).CrossRefGoogle Scholar
  122. 122.
    A. B. Gapeyev, Biomed. Radioelektr. 6, 20 (2014).Google Scholar
  123. 123.
    L. Kh Garkavi and E. B. Kvakina, Magnitologiya 2, 3 (1991).Google Scholar
  124. 124.
    L. K. H. Garkavi, E. B. Kvakina, and A. I. Shikchlyarova, Biophysics (Moscow) 41 (4), 909 (1996).Google Scholar
  125. 125.
    L. H. Garkavi, G. V. Zhukova, A. I. Shikhliarova, et al., Biophysics (Moscow) 59 (6), 944 (2014).CrossRefGoogle Scholar
  126. 126.
    T. N. Gudtskova, G. V. Zhukova, M. I. Bragina, et al., Bull. Exp. Biol. Med. 155 (6), 793 (2013).CrossRefGoogle Scholar
  127. 127.
    M. A. Ukolova and G. G. Khimich, in Proceedings of the 13th Conf. of Physiologists of Southern Russia (Rostov-on-Don, 1960), p. 143 [ in Russian].Google Scholar
  128. 128.
    M. A. Ukolova and E. B. Kvakina, in Effects of Magnetic Fields on Biological Objects (Nauka, Moscow, 1971) [in Russian].Google Scholar
  129. 129.
    J. M. Barnothy, in Proc. First Nat. Biophys. Conf. Columbus (Yale Univ. Press, New Haven, 1959), p. 735.Google Scholar
  130. 130.
    B. T. Chernet and M. Levin, Dis. Models Mech. 6, 595 (2013).CrossRefGoogle Scholar
  131. 131.
    M. Levin, Mol. Biol. Cell 25 (24), 3835 (2014).CrossRefGoogle Scholar
  132. 132.
    D. S. Adams and M. Levin, Cell Tissue Res. 352, 95 (2013).CrossRefGoogle Scholar
  133. 133.
    S. Nuccitelli, C. Cerella, S. Cordisco, et al., Ann. N. Y. Acad. Sci. 1090, 217 (2006).ADSCrossRefGoogle Scholar
  134. 134.
    A. I. Shikhlyarova, O. V. Tarnopol’skaya, A. N. Shevchenko, et al., Klin. Eksp. Morfol. 3, 44 (2013).Google Scholar
  135. 135.
    A. N. Shevchenko, A. I. Shikhlyarova, E. V. Filatova, et al., Urologiya 1, 54 (2015).Google Scholar
  136. 136.
    C. Marzano, M. Pellei, F. Tistado, and C. Santini, J. Anticancer Agents Med. Chem. 9 (2), 185 (2009).CrossRefGoogle Scholar
  137. 137.
    J. Osredkar and N. Sustar, J. Clin. Toxicol. S3-001 (2011).Google Scholar
  138. 138.
    R. A. Festa, and D. J. Thiele, Curr. Biol. 21, 877 (2011).CrossRefGoogle Scholar
  139. 139.
    E. Mocchegiani, L. Costarelli, R. Giacconi, et al., Ageing Res. Rev. 11 (2), 297 (2012).CrossRefGoogle Scholar
  140. 140.
    A. J. Romero Cabrera, Pathobiol. Aging Age Relat. Dis. 5, e25592 (2015).Google Scholar
  141. 141.
    H. Hong, J. Shi, Y. Yang, et al., Nano Lett. 11 (9), 3744 (2011).ADSCrossRefGoogle Scholar
  142. 142.
    A. A. Kuznetsov, V. G. Leontiev, V. A. Brukvin, et al., J. Magnetism Magnetic Materials 311 (1), 197 (2007).ADSCrossRefGoogle Scholar
  143. 143.
    Y. Li, W. Lu, Q. Huang, et al., Nanomedicine 5 (8), 1161 (2010).CrossRefGoogle Scholar
  144. 144.
    S. B. Lakshmanan, Gold/Copper Sulphide and Gold Nanoparticles for Application in Cancer Therapy (Univ. of Texas at Arlington Press, Arlington, TX, 2011).Google Scholar
  145. 145.
    L. Guo, D. D. Yan, D. Yang, et al., ACS Nano 8 (6), 5670 (2014).CrossRefGoogle Scholar
  146. 146.
    Y. Zhang, W. Chen, S. Wang, et al., J. Biomed. Nanotechnol. 4 (4), 432 (2008).MathSciNetCrossRefGoogle Scholar
  147. 147.
    H. Guo, H. Qian, N. M. Idris, and Y. Zhang, Nanomedicine 6 (3), 486 (2010).Google Scholar
  148. 148.
    Q. Yuan, S. Hein, and R. D. Misra, Acta Biomater. 6 (7), 2732 (2010).CrossRefGoogle Scholar
  149. 149.
    M. Faheem, G. Mingyi, G. Yingjie, et al., J. Mater. Chem. 21, 13406–13412 (2011).CrossRefGoogle Scholar
  150. 150.
    E. R. Arakelova, S. G. Grigoryan, and F. G. Arsenyan, Int. J. Med. Health Pharm. Biomed. Eng. 8 (1), 33 (2014).Google Scholar
  151. 151.
    W. Shuang, X. Wang, G. Wang, et al., J. Mater. Chem. B. 3, 5603 (2015).CrossRefGoogle Scholar
  152. 152.
    G. P. Jose, S. Santra, K. S. Mandal, and T. K. Sengupta, J. Nanobiotechnol. 9 (9), 1 (2011).Google Scholar
  153. 153.
    M. J. Akhtar, M. Ahamed, S. Kumar, et al., Int. J. Nanomed. 7, 845 (2012).Google Scholar
  154. 154.
    M. A. Siddiqui, H. A. Alhadlaq, J. Ahmad, et al., PLOS ONE, 8 (8), e69534 (2013).ADSCrossRefGoogle Scholar
  155. 155.
    M. P. Vinardell and M. Mitjans, Nanomaterials 5 (2), 1004 (2015).CrossRefGoogle Scholar
  156. 156.
    Y. Wang, X.-Y. Zi, J. Su, et al, Int. J. Nanomed. 7, 2641 (2012).Google Scholar
  157. 157.
    S. Ostrovsky, G. Kazimirsky, A. Gedanken, and C. Brodie, J. Nano Res. 2, 882 (2009).CrossRefGoogle Scholar
  158. 158.
    J. C. Layne, Zinc Oxide Nanoparticles as Potential Novel Anticancer Therapies (Boise State Univ. Graduate College, Boise, ID, 2011).Google Scholar
  159. 159.
    K. W. Ng, S. P. Khoo, B. C. Heng, et al., Biomaterials 32, 8218 (2011).CrossRefGoogle Scholar
  160. 160.
    C. Hanley, J. Layne, A. Punnoose, et al., Nanotechnology 19, 295103 (2008).CrossRefGoogle Scholar
  161. 161.
    J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, Expert Opin. Drug Deliv. 7 (9), 1063 (2010).CrossRefGoogle Scholar
  162. 162.
    S. Triboulet, C. Aude-Garci, M. Carrière, et al., Mol. Cell Proteomics 12 (11), 3108 (2013).CrossRefGoogle Scholar
  163. 163.
    V. Wilhelmi, U. Fischer, H. Weighardt, et al., PLOS ONE 8 (6), e65704 (2013).ADSCrossRefGoogle Scholar
  164. 164.
    R. Roy, S. K. Singh, M. Das, et al., Immunology 142 (3), 453 (2014).CrossRefGoogle Scholar
  165. 165.
    C. Petrarca, E. Clemente, V. Amato, et al., Clin. Mol. Allergy 13 (1), 13 (2015).CrossRefGoogle Scholar
  166. 166.
    C. Hanley, A. Thurber, C. Hanna, et al., Nanoscale. Res. Lett. 4 (12), 1409 (2009).ADSCrossRefGoogle Scholar
  167. 167.
    C. S. Kim, H. D. Nguyen, R. M. Ignacio, et al., Int. J. Nanomed. 9 (Suppl. 2), 195 (2014).Google Scholar
  168. 168.
    D. Sahu, G. M. Kannan, and R. Vijayaraghavan, J. Toxicol. Environ. Health A 77 (4), 177 (2014).CrossRefGoogle Scholar
  169. 169.
    E. V. Shalashnaya, I. A. Goroshinskaya, P. S. Kachesova, et al., Bull. Exp. Biol. Med. 152 (5), 619 (2012).CrossRefGoogle Scholar
  170. 170.
    O. I. Kit, E. Yu. Zlatnik, and L. V. Peredreeva, Bull. Exp. Biol. Med. 156 (9), 367 (2013).Google Scholar
  171. 171.
    Y. Wang, F. Yang, H.-X. Zhang, et al., Cell Death Dis. 4, e783 (2013).CrossRefGoogle Scholar
  172. 172.
    L. Kh. Garkavi, G. V. Zhukova, T. A. Bartieneva, et al., RF Patent No. 2474884 (February 10, 2013).Google Scholar
  173. 173.
    G. V. Zhukova, L. H. Garkavi, O. I. Kit, et al., J. Clin. Oncol. 32 (Suppl. 15), e14015 (2014).Google Scholar
  174. 174.
    Yu. S. Sidorenko, I. A. Goroshinskaya, P. S. Kachesova, et al., RF Patent No. 2417453 (April 27, 2011).Google Scholar
  175. 175.
    P. S. Kachesova, I. A. Goroshinskaya, and V. B. Borodulin, J. Clin. Oncol. 31 (Suppl. 15), 3084 (2013).Google Scholar
  176. 176.
    I. A. Goroshinskaya, P. S. Kachesova, and V. B. Borodulin, Nanotekhnika 2 (38), 25 (2014).Google Scholar
  177. 177.
    I. A. Goroshinskaya, P. S. Kachesova, L. A. Nemashkalova, and V. B. Borodulin, RF Patent No. 2561294 (August 28, 2015).Google Scholar
  178. 178.
    I. A. Goroshinskaya, P. S. Kachesova, V. B. Borodulin, and L. A. Nemashkalova, Fundament. Issled. 7 (1), 9 (2015).Google Scholar
  179. 179.
    P. S. Kachesova, I. A. Goroshinskaya, O. E. Polozhentsev, and V. B. Borodulin, J. Clin. Oncol. 32 (Suppl.15), e14012 (2014).Google Scholar
  180. 180.
    E. Yu. Zlatnik and L. V. Peredreeva, Ross. Bioterapevt. Zh. 11 (2), 20 (2012).Google Scholar
  181. 181.
    I. A. Goroshinskaya, P. S. Kachesova, E. V. Shalashnaya, et al., Izv. Vuzov, Severo-Kavkaz. Region, Ser. Estestv. Nauki, Special Issue: Clinical and Experimental Oncology 88 (2010) [in Russian].Google Scholar
  182. 182.
    P. S. Kachesova, O. F. Evstratova, and I. A. Goroshinskaya, Onkokhirurgiya 5 (1), 85 (2013).Google Scholar
  183. 183.
    E. Yu. Zlatnik and L. V. Peredreeva, Fundament. Issled. 7 (2), 282 (2014).Google Scholar
  184. 184.
    L. Kh. Garkavi, Activation Therapy: Antristress Activation and Training Reactions and Their Use for Health Improvement, Disease Prevention, and Treatment (Rostov State Univ., Rostov-on-Don, 2006) [in Russian].Google Scholar
  185. 185.
    I. A. Goroshinskaya, P. S. Kachesova, V. B. Borodulin, et al., Usp. Sovrem. Estestvozn. 10, 303 (2015).Google Scholar
  186. 186.
    E. V. Batrakova and A. V. Kabanov, J. Drug Deliv. Sci. Tech. 23 (5), 419 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • G. V. Zhukova
    • 1
  • I. A. Goroshinskaya
    • 1
  • A. I. Shikhliarova
    • 1
  • O. I. Kit
    • 1
  • P. S. Kachesova
    • 1
  • O. E. Polozhentsev
    • 2
  1. 1.Rostov Research Institute of OncologyMinistry of Healthcare of the Russian FederationRostov-on-DonRussia
  2. 2.Smart Materials International Research CenterSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations