Advertisement

Biophysics

, Volume 61, Issue 3, pp 351–360 | Cite as

Temperature-induced changes of the packing of double-stranded linear DNA molecules in particles of liquid-crystalline dispersions

  • Yu. M. Yevdokimov
  • S. G. Skuridin
  • V. I. Salyanov
  • E. I. Kats
Molecular Biophysics

Abstract

The circular dichroism spectra of liquid-crystalline dispersions obtained by phase exclusion of linear double-stranded DNA molecules from aqueous saline solutions of polyethylene glycol (120 ≤ C PEG ≤ 300 mg/mL) have been investigated. The formation of liquid-crystalline dispersions at polyethylene glycol concentrations ranging from 120 to 200 mg/mL was accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism; this is indicative of cholesteric packing of the double stranded DNA molecules in the particles of the dispersion. Liquid-crystalline dispersions formed at PEG concentrations higher than 220 mg/mL and room temperature did not show any abnormal bands in the circular dichroism spectra; this is indicative of hexagonal packing of double-stranded DNA molecules in the particles of the dispersions. Heating of optically inactive liquid crystal dispersions induced a transition of the dispersions into a different state accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism. This transition is considered within the concept of the transformation of a hexagonal packing of DNA molecules into a cholesteric packing. A qualitative mechanism of such a transition is proposed that is formulated in the terms of the “quasinematic” layers of double-stranded DNA molecules that change their spatial orientation under the competing influences of the osmotic pressure of the solvent, orientational elasticity of the cholesteric packing, and thermal fluctuations.

Keywords

particles of liquid-crystalline DNA dispersions circular dichroism abnormal optical activity hexagonal and cholesteric packing of DNA molecules “quasinematic” layers the transition from hexagonal to cholesteric packing 

Abbreviations

PEG

polyethylene glycol

LCD

liquid crystal dispersion

CD

circular dichroism

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. M. Yevdokimov, S. G. Skuridin, and G. B. Lortkipanidze, Liq. Cryst. 12 (1), 1 (1992).CrossRefGoogle Scholar
  2. 2.
    Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, DNA Liquid-Crystalline Dispersions and Nanoconstructions (CRC, Boca Raton, FL, 2011).CrossRefGoogle Scholar
  3. 3.
    Yu. M. Yevdokimov, V. I. Salyanov, M. N. Savateev, et al., Tekhnol. Zhivykh Sistem 10 (1), 20 (2013).Google Scholar
  4. 4.
    A. Goldar, H. Thomson, and J. M. Seddon, J. Phys.: Condens. Matter 20, 035102 (2008).ADSGoogle Scholar
  5. 5.
    F. Livolant and A. Leforestier, Prog. Polym. Sci. 21 (6), 1115 (1996).CrossRefGoogle Scholar
  6. 6.
    A. A. Kornyshev, D. J. Lee, S. Leikin, and A. Wynveen, Rev. Mod. Phys. 79 (3), 943 (2007).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Bellini, R. Cerbino, and G. Zanchetta, Top. Curr. Chem. 318, 225 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Leonard, H. Hong, N. Easwar, and H. H. Strey, Polymer 42 (13), 5823 (2001)CrossRefGoogle Scholar
  9. 9.
    A. A. Kornyshev, S. Leikin, and S. V. Malinin, Eur. Phys. J. E7, 83 (2002).Google Scholar
  10. 10.
    A. G. Cherstvy, J. Phys. Chem. B 112 (40), 12585 (2008).CrossRefGoogle Scholar
  11. 11.
    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981) [in Russian].Google Scholar
  12. 12.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., Biophysics (Moscow) 60 (5), 708 (2015).CrossRefGoogle Scholar
  13. 13.
    Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, et al., The CD Spectra of Double-Stranded DNA Liquid Crystalline Dispersions (Nova Science Publishers, New York, 2011).CrossRefGoogle Scholar
  14. 14.
    S. V. Semenov and Yu. M. Yevdokimov, Biophysics (Moscow) 60 (2), 188 (2015).CrossRefGoogle Scholar
  15. 15.
    Yu. M. Yevdokimov, T. L. Pyatigorskaya, O. F. Polivtsev, et al., Mol. Biol. (Moscow) 10 (6), 1221 (1976).Google Scholar
  16. 16.
    S. G. Skuridin, H. Damaschun, G. Damaschun, et al., Stud. Biophys. 112 (2–3), 139 (1986).Google Scholar
  17. 17.
    D. Durand, J. Doucet, and F. Livolant, J. Phys. II 2 (9), 1769 (1992).Google Scholar
  18. 18.
    F. Livolant, Eur. J. Cell Biol. 33 (2), 300 (1984).Google Scholar
  19. 19.
    R. L. Rill, T. E. Strzelecka, M. W. Davidson, and D. H. van Winkle, Physica A 176 (1), 87 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    A. Leforestier and F. Livolant, Biophys. J. 65 (1), 56 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    V. Bloomfield, D. M. Crothers, and I. Tinoko, Physical Chemistry of Nucleic Acids (Harper & Row, New York, 1974).Google Scholar
  22. 22.
    J. Piskur and A. Rupprecht, FEBS Lett. 375 (3), 174 (1995).CrossRefGoogle Scholar
  23. 23.
    R. Podgornik, H. H. Strey, K. Gawrisch, et al., Proc. Natl. Acad. Sci. U. S. A. 93 (9), 4261 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    F. Livolant, A. M. Levelut, J. Doucet, and L. P. Benoit, Nature 339 (6227), 724 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    F. Livolant, J. Mol. Biol. 218 (1), 165 (1991).CrossRefGoogle Scholar
  26. 26.
    Yu. M. Yevdokimov, T. L. Pyatigorskaya, N. A. Belozerskaya, et al., Mol. Biol. (Moscow) 11 (3), 507 (1977).Google Scholar
  27. 27.
    D. Grasso, S. Fasone, C. La Rosa, and V. Salyanov, Liq. Cryst. 9 (2), 299 (1991).CrossRefGoogle Scholar
  28. 28.
    A. S. Sonin, Introduction to the Physics of Liquid Crystals (Nauka, Moscow, 1983) [in Russian].Google Scholar
  29. 29.
    Yu. M. Yevdokimov, S. G. Skuridin, and V. I. Salyanov, Liq. Cryst. 3 (11), 1443 (1988).CrossRefGoogle Scholar
  30. 30.
    N. Sundaresan, Th. Thomas, Th. J. Thomas, and C. K. S. Pillai, Macromol. Biosci. 6 (1), 27 (2006).CrossRefGoogle Scholar
  31. 31.
    E. M. Burlyn M. R. Kaufman, Plant Physiol. 51 (5), 914 (1973).CrossRefGoogle Scholar
  32. 32.
    E. M. Burlyn, Plant Physiol. 72 (1), 66 (1983).CrossRefGoogle Scholar
  33. 33.
    C. B. Stanley and H. H. Strey, Macromolecules 36 (18), 6888 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    V. I. Ivanov, L. E. Minchenkova, E. E. Minyat, et al., J. Mol. Biol. 87 (4), 817 (1974).CrossRefGoogle Scholar
  35. 35.
    J. C. Girod, W. C. Jonnson, S K. Huntington, and M. F. Maestre, Biochemistry 12 (25), 5092 (1973).CrossRefGoogle Scholar
  36. 36.
    A. A. Kornyshev and S. Leikin, Proc. Natl. Acad. Sci. U. S. A. 95 (23), 13579 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    L. Rudd, D. J. Lee, and A. A. Kornyshev, J. Phys.: Condens. Matter 19 (41), 416103 (2007).Google Scholar
  38. 38.
    D. Sanyal, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 81 (3, Pt 1), 032901 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    G. B. Lordkipanidze, Yu. M. Yevdokimov, V. A. Kadykov, and Ya. M. Varshavsky, Mol. Biol. (Moscow) 14 (6), 1378 (1980).Google Scholar
  40. 40.
    S. G. Skuridin, N. S. Badaev, A. T. Dembo, et al., Mol. Biol. (Moscow) 5 (21), 1386 (1987).Google Scholar
  41. 41.
    S. G. Skuridin, N. S. Badaev, A. T. Dembo, et al., Liq. Cryst. 1 (3), 51 (1988).CrossRefGoogle Scholar
  42. 42.
    S. P. Papkov and V. G. Kulichikhin, The Liquid Crystalline State of Polymers (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  43. 43.
    A. Gautier, L. Michel-Salamin, E. Tosi-Couture, et al., J. Ultrastruct. Mol. Struct. Res. 97 (1–3), 10 (1986).CrossRefGoogle Scholar
  44. 44.
    T. T. Nguyen, arXiv:1508.02085v1 [q-bio.BM] 9 Aug 2015.Google Scholar
  45. 45.
    G. S. Chilaya and L. N. Lisetskii, Usp. Fiz. Nauk 134 (2), 279 (1981).CrossRefGoogle Scholar
  46. 46.
    F. A. Lindemann, Physik. Z. 11 (14), 609 (1910).Google Scholar
  47. 47.
    R. Podgornik and V. A. Parsegian, Phys. Rev. Lett. 80 (7), 1560 (1998).ADSCrossRefGoogle Scholar
  48. 48.
    M. Kanduc, J. Dobnikar, and R. Podgornik, Soft Matter 5 (4), 868 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    E. Grelet, Phys. Rev. Lett. 100 (16), 168301 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • Yu. M. Yevdokimov
    • 1
  • S. G. Skuridin
    • 1
  • V. I. Salyanov
    • 1
  • E. I. Kats
    • 2
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations