Biophysics

, Volume 60, Issue 5, pp 849–858 | Cite as

Early development under microgravity conditions

Biophysics of Complex Systems

Abstract

This review is devoted to various aspects of early development under spaceflight conditions. It discusses different possible cell mechanosensors, as well as structural and functional changes in cells, predominantly in non-muscle ones, that are exposed to natural and artificial microgravity. We present the results of different experiments concerning the embryonic development of fish, amphibians, birds, and mammals under microgravity conditions and discuss possible causes of the observed morphological changes.

Keywords

mechanosensitivity microgravity embryogenesis cytoskeleton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. J. Dennerll, H. C. Joshi, V. L. Steel, et al., J. Cell Biol. 107, 665 (1988).CrossRefGoogle Scholar
  2. 2.
    A. J. Putnam, K. Schultz, and D. J. Mooney, Am. J. Physiol. 280, C556 (2001).Google Scholar
  3. 3.
    S. Liu, D. A. Calderwood, and M. H. Ginsberg, J. Cell Sci. 113, 3563 (2000).Google Scholar
  4. 4.
    S. Sukharev and D. P. Corey, Sci. STKE 2004, re4 (2004).Google Scholar
  5. 5.
    R. Maroto, A. Raso, T. G. Wood, et al., Nat. Cell Biol. 7, 179 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Sukharev, M. Betanzos, C. S. Chiang, and H. R. Guy, Nature 409, 720 (2001).CrossRefADSGoogle Scholar
  7. 7.
    J. Howard and S. Bechstedt, Curr. Biol. 14, R224 (2004).CrossRefGoogle Scholar
  8. 8.
    O. P. Hamill and B. Martinac, Physiol. Rev. 81, 685 (2001).Google Scholar
  9. 9.
    G. Chang, R. H. Spencer, A. T. Lee, et al., Science 228, 2220 (1998).CrossRefADSGoogle Scholar
  10. 10.
    J. Gullingsrud, D. Kosztin, and K. Schulten, Biophys. J. 80, 2074 (2001).CrossRefGoogle Scholar
  11. 11.
    E. Perozo, D. M. Cortes, P. Sompornpisut, et al., Nature 418, 942 (2002).CrossRefADSGoogle Scholar
  12. 12.
    J. Arnadottir and M. Chalfie, Annu. Rev. Biophys. 39, 111 (2010).CrossRefGoogle Scholar
  13. 13.
    C. Montell, Sci. STKE 2005 (272), re3 (2005).Google Scholar
  14. 14.
    J. A. Stiber, Y. Tang, T. Li, and P. B. Rosenberg, Curr. Hypertens. Rep. 14 (6), 492 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Lesage and M. Lazdunski, Am. J. Physiol. Renal Physiol. 279 (5), F793 (2000).Google Scholar
  16. 16.
    M. Althaus, R. Bogdan, W. G. Clauss, and M. Fronius, FASEB J. 21 (10), 2389 (2007).CrossRefGoogle Scholar
  17. 17.
    L. M. Satlin, S. Sheng, C. B. Woda, and T. R. Kleyman, Am. J. Physiol. 280, F1010 (2001).Google Scholar
  18. 18.
    M. D. Carattino, S. Sheng, and T. R. Kleyman, J. Biol. Chem. 279, 4120 (2004).CrossRefGoogle Scholar
  19. 19.
    W. Liu, S. Xu, C. Woda, et al., Am. J. Physiol. 285, F998 (2003).CrossRefGoogle Scholar
  20. 20.
    R. Tarran, B. Button, M. Picher, et al., J. Biol. Chem. 280, 35751 (2005).CrossRefGoogle Scholar
  21. 21.
    H. A. Drummond, M. J. Welsh, and F. M. Abboud, Ann. N.Y. Acad. Sci. 940, 42 (2001).CrossRefADSGoogle Scholar
  22. 22.
    H. A. Drummond, D. Gebremedhin, and D. R. Harder, Hypertension 44, 643 (2004).CrossRefGoogle Scholar
  23. 23.
    N. L. Jernigan and H. A. Drummond, Am. J. Physiol. 289, F891 (2005).CrossRefGoogle Scholar
  24. 24.
    H. A. Drummond, F. M. Abboud, and M. J. Welsh, Brain Res. 884, 1 (2000).CrossRefGoogle Scholar
  25. 25.
    T. H. Ma, R. L. Patterson, D. B. van Rossum, et al., Science 287, 1647 (2000).CrossRefADSGoogle Scholar
  26. 26.
    J. R. Holda and L. A. Blatter, FEBS Lett. 403, 191 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Suzuki, K. Miyazaki, M. Ikeda, et al., J. Membr. Biol. 134, 31 (1993).CrossRefGoogle Scholar
  28. 28.
    E. M. Schwiebert, J. W. Mills, and B. A. Stanton, J. Biol. Chem. 269, 7081 (1994).Google Scholar
  29. 29.
    P. Devarajan, D. A. Scaramuzzino, and J. S. Morrow, Proc. Natl. Acad. Sci. U. S. A. 91, 2965 (1995).CrossRefADSGoogle Scholar
  30. 30.
    Y. Srinivasan, L. Elmer, J. Davis, et al., Nature 333, 177 (1988).CrossRefADSGoogle Scholar
  31. 31.
    D. J. Benos, M. S. Awayda, I. I. Ismailov, and J. P. Johnson, J. Membr. Biol. 143, 1 (1995).CrossRefGoogle Scholar
  32. 32.
    Yu. A. Negulyaev, E. A. Vedernikova, and A. V. Maximov, Mol. Biol. Cell 7, 1857 (1996).CrossRefGoogle Scholar
  33. 33.
    A. V. Maximov, E. A. Vedernikova, H. Hinssen, et al., FEBS Lett. 412, 94 (1997).CrossRefGoogle Scholar
  34. 34.
    A. V. Maximov, E. A. Vedernikova, and Yu. A. Negulyaev, Biophys. J. 72 (2), A226 (1997).Google Scholar
  35. 35.
    T. Harder and K. Simons, Eur. J. Immunol. 29, 556 (1999).CrossRefGoogle Scholar
  36. 36.
    D. A. Brown and E. London, J. Biol. Chem. 275, 17221 (2000).CrossRefGoogle Scholar
  37. 37.
    T. Nebl, K. N. Pestonjamasp, J. D. Leszyk, et al., J. Biol. Chem. 277, 43399 (2002).CrossRefGoogle Scholar
  38. 38.
    D. A. Brown, Physiology (Bethesda), 21, 430 (2006).CrossRefGoogle Scholar
  39. 39.
    I. Levitan, A. E. Christian, T. N. Tulenko, and G. H. Rothblat, J. Gen. Physiol. 115, 405 (2000).CrossRefGoogle Scholar
  40. 40.
    V. G. Shlyonsky, F. Mies, and S. Sariban-Sohraby, Am. J. Physiol. Renal Physiol. 284 (1), F182 (2003).CrossRefGoogle Scholar
  41. 41.
    M. Edidin, Annu. Rev. Biophys. Biomol. Struct. 32, 257 (2003).CrossRefGoogle Scholar
  42. 42.
    A. V. Sudarikova, Y. A. Negulyaev, and E. A. Morachevskaya, Proc. Physiol. Soc. No. 95 (2006).Google Scholar
  43. 43.
    E. A. Morachevskaya, A. V. Sudarikova, and Y. A. Negulyaev, Cell Biol. Int. 31, 374 (2007).CrossRefGoogle Scholar
  44. 44.
    S. Jalali, M. A. del Pozo, K. Chen, et al., Proc. Natl. Acad. Sci. U. S. A. 98, 1042 (2001).CrossRefADSGoogle Scholar
  45. 45.
    H. Huang, R. D. Kamm, and R. T. Lee, Am. J. Physiol. Cell Physiol. 287, C1 (2004).CrossRefGoogle Scholar
  46. 46.
    P. J. Butler, T. C. Tsou, J. Y. Li, et al., FASEB J. 16, 216 (2002).Google Scholar
  47. 47.
    A. J. Maniotis, C. S. Chen, and D. E. Ingber, Proc. Natl. Acad. Sci. U. S. A. 94, 849 (1997).CrossRefADSGoogle Scholar
  48. 48.
    D. J. Odde, L. Ma, A. H. Briggs, et al., J. Cell Sci. 112, 3283 (1999).Google Scholar
  49. 49.
    D. Craig, A. Krammer, K. Schulten, and V. Vogel, Proc. Natl. Acad. Sci. U. S. A. 98, 5590 (2001).CrossRefADSGoogle Scholar
  50. 50.
    M. Gao, D. Craig, V. Vogel, and K. Schulten, J. Mol. Biol. 323, 939 (2002).CrossRefGoogle Scholar
  51. 51.
    V. Vogel, W. E. Thomas, D. W. Craig, et al., Trends Biotechnol. 19, 416 (2001).CrossRefGoogle Scholar
  52. 52.
    B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada, Nat. Rev. Mol. Cell Biol. 2, 793 (2001).CrossRefGoogle Scholar
  53. 53.
    M. E. Chicurel, R. H. Singer, C. J. Meyer, and D. E. Ingber, Nature 392, 730 (1998).CrossRefADSGoogle Scholar
  54. 54.
    C. Zhong, M. Chrzanowska-Wodnicka, J. Brown, et al., J. Cell Biol. 141, 539 (1998).CrossRefGoogle Scholar
  55. 55.
    Y. Sawada and M. P. Sheetz, J. Cell Biol. 156, 609 (2002).CrossRefGoogle Scholar
  56. 56.
    T. Furukawa, Y. Ono, H. Tsuchiya, et al., J. Mol. Biol. 313 (4), 775 (2001).CrossRefGoogle Scholar
  57. 57.
    I. M. Vikhlyantsev and Z. A. Podlybnaya, Biochemistry (Moscow) 77 (13), 1515 (2012).CrossRefGoogle Scholar
  58. 58.
    C. A. Ottenheijm, H. W. van Hees, L. M. Heunks and H. Granzier, Am. J. Physiol. Lung Cell Mol. Physiol. 300 (2), L161 (2011).CrossRefGoogle Scholar
  59. 59.
    A. Ulanova, Y. Gritsina, I. Vikhlyantsev, et al., Bimed. Res. Int. 2015, 104735 (2015).Google Scholar
  60. 60.
    D. E. Ingber, FASEB J. 20, 811 (2006).CrossRefGoogle Scholar
  61. 61.
    C. Vera, R. Skelton, F. Bossens, and L. A. Sung, Ann. Biomed. Eng. 33, 1387 (2005).CrossRefGoogle Scholar
  62. 62.
    G. Albrecht-Buehler, ASGSB Bull. 5 (2), 3 (1992).Google Scholar
  63. 63.
    A. Cogoli, J. Gravit. Physiol. 3 (1), 1 (1996).ADSGoogle Scholar
  64. 64.
    S. J. Pardo, M. J. Patel, M. C. Sykes, et al., Am. J. Physiol. Cell Physiol. 288 (6), C1211 (2005).CrossRefGoogle Scholar
  65. 65.
    J. G. Gershovich, N. A. Konstantinova, P. M. Gershovich, and L. B. Buravkova, J. Gravit. Physiol. 14 (1), 133 (2007).Google Scholar
  66. 66.
    L. B. Buravkova, Yu. A. Romanov, N. A. Konstantinova, et al., Acta Astronaut. 63, 603 (2008).CrossRefADSGoogle Scholar
  67. 67.
    P. M. Gershovich, J. G. Gershovich, and L. B. Buravkova, J. Gravit. Physiol. 15 (1), 203 (2008).Google Scholar
  68. 68.
    D. Sakar, T. Nagaya, K. Koga, and H. Seo, Cells Environ. Med. 43 (1), 22 (1999).Google Scholar
  69. 69.
    B. M. Uva, M. A. Masini, M. Sturla, et al., Brain Res. 934, 132 (2002).CrossRefGoogle Scholar
  70. 70.
    S. Gaboyard, M. P. Blachard, B. T. Travo, et al., NeuroReport 13 (16), 2139 (2002).CrossRefGoogle Scholar
  71. 71.
    P. A. Plett, R. Abonour, S. M. Frankovitz, and C. M. Orschell, Exp. Hematol. 32, 773 (2004).CrossRefGoogle Scholar
  72. 72.
    M. A. Kacena, P. Todd, and W. J. Landis, In vitro Cell Dev. Biol. Animal 39 (10), 454 (2004).CrossRefGoogle Scholar
  73. 73.
    S. J. Crawford-Young, Int. J. Dev. Biol. 50 (2–3), 183 (2006).CrossRefGoogle Scholar
  74. 74.
    H. Schatten, M. L. Lewis, and A. Chakrabari, Acta Astronaut. 49 (3–10), 399 (2001).CrossRefADSGoogle Scholar
  75. 75.
    N. A. Konstantinova, L. B. Buravkova, E. S. Manuilova, and I. A. Grivennikov, J. Gravit. Physiol. 13 (1), 149 (2006).Google Scholar
  76. 76.
    M. Zayzafoon, W. E. Gathings, and J. M. McDonald, Endocrinology 145 (5), 2421 (2004).CrossRefGoogle Scholar
  77. 77.
    V. E. Meyers, M. Zayzafoon, S. R. Gonda, et al., J. Cell Biochem. 93 (4), 697 (2004).CrossRefGoogle Scholar
  78. 78.
    V. E. Meyers, M. Zayzafoon, J. T. Douglas, and J. M. McDonald, J. Bone Miner. Res. 20 (10), 1858 (2005).CrossRefGoogle Scholar
  79. 79.
    L. Yuge, T. Kajiume, H. Tahara, et al., Stem Cell Dev. 15 (6), 921 (2006).CrossRefGoogle Scholar
  80. 80.
    Z. Q. Dai, R. Wang, S. K. Ling, et al., Cell Prolif. 40 (5), 671 (2007).CrossRefGoogle Scholar
  81. 81.
    M. J. Patel, W. Liu, M. C. Sykes, et al., J. Cell Biochem. 101 (3), 587 (2007).CrossRefGoogle Scholar
  82. 82.
    Z. Pan, J. Yang, C. Guo, et al., Stem Cell Dev. 17 (4), 795 (2008).CrossRefGoogle Scholar
  83. 83.
    Y. Huang, Z. Q. Dai, S. K. Ling, et al., J. Biomed. Sci. 21, 16 (2009).Google Scholar
  84. 84.
    R. Sordella, W. Jiang, G. C. Chen, et al., Cell 113 (2), 147, (2003).CrossRefGoogle Scholar
  85. 85.
    R. McBeath, D. M. Pirone, C. M. Nelson, et al., Dev. Cell 6 (4), 483 (2005).CrossRefGoogle Scholar
  86. 86.
    K. A. Souza, S. D. Black, and R. J. Wassersug, Proc. Natl. Acad. Sci. USA. 92, 1975 (1995).CrossRefADSGoogle Scholar
  87. 87.
    D. Husson, L. Gualandris-Parisot, F. Foulquier, et al., Adv. Space Res. 22 (2), 303 (1998).CrossRefADSGoogle Scholar
  88. 88.
    A. M. Duprat, D. Husson, and L. Gualandris-Parisot, Brain Res. Rev. 28 (1–2), 19 (1998).CrossRefGoogle Scholar
  89. 89.
    X. Li and M. Noll, Nature 367, 83 (1994).CrossRefADSGoogle Scholar
  90. 90.
    J. Cooke, M. A. Nowak, M. Boerlijst, and J. MaynardSmith, Trends Genet. 13 (9), 360 (1997).CrossRefGoogle Scholar
  91. 91.
    J. Miquel and K. A. Souza, Adv. Space Biol. Med. 1, 104 (1991).CrossRefGoogle Scholar
  92. 92.
    G. P. Parfyonov, R. N. Platonova, M. G. Tairbekov, et al., Life Sci. Space Res. 17, 297 (1979).CrossRefGoogle Scholar
  93. 93.
    G. P. Parfyonov, Kosm. Issled. 2, 330 (1964).Google Scholar
  94. 94.
    G. P. Parfyonov, Iskusstv. Sputn. Zemli No. 10, 69 (1961).Google Scholar
  95. 95.
    G. P. Parfyonov, Kosm. Issled. 2, 335 (1964).Google Scholar
  96. 96.
    G. P. Parfyonov, Kosm. Issled. 5, 633 (1967).Google Scholar
  97. 97.
    G. P. Parfyonov, Kosm. Issled. 3, 643 (1965).Google Scholar
  98. 98.
    Ya. L. Glembotskii, Kosm. Issled. 8, 616 (1970).Google Scholar
  99. 99.
    Ya. L. Glembotskii, E. A. Abeleva, Yu. A. Lapkin, and G. P. Parfyonov, Iskusstv. Sputn. Zemli No. 10, 61 (1961).Google Scholar
  100. 100.
    Ya. L. Glembotskii, Yu. A. Lapkin, G. P. Parfyonov, and E. M. Kamshilova, Kosm. Issled. 1, 326 (1963).Google Scholar
  101. 101.
    Ya. L. Glembotskii and G. P. Parfyonov, Probl. Kosm. Biol. 2, 98 (1962).Google Scholar
  102. 102.
    Ya. L. Glembotskii, G. P. Parfyonov, and Yu. A. Lapkin, Iskusstv. Sputn. Zemli 15, 113 (1963).Google Scholar
  103. 103.
    Ya. L. Glembotskii, G. P. Parfyonov, Yu. A. Lapkin, and I. V. Baranovskaya, Kosm. Issled. 5, 293 (1967).Google Scholar
  104. 104.
    I. Vernos, J. Gonzalez-Jurado, M. Calleja, and R. Marco, Int. J. Dev. Biol. 33 (2), 213 (1989).Google Scholar
  105. 105.
    R. Marco, A. Bengurira, J. Sanchez, and E. de Juan, Exp. J. Biotechnol. 47, 179 (1996).CrossRefGoogle Scholar
  106. 106.
    K. Ijiri, Fish Biol. J. Medaka 7, 1 (1995).Google Scholar
  107. 107.
    S. Porazinski, H. Wang, Y. Asaoka, et al., Nature 251, 217 (2015).CrossRefADSGoogle Scholar
  108. 108.
    J. S. Tash and G. E. Bracho, FASEB J. 13 (Suppl.), S43 (1999).Google Scholar
  109. 109.
    A. W. Neff, H. Yokota, H. M. Chung, et al., Dev. Biol. 155, 270 (1993).CrossRefGoogle Scholar
  110. 110.
    Ta. G. Dorfman and V. G. Cherdantsev, Ontogenez 8, 238 (1977).Google Scholar
  111. 111.
    A. De Maziere, J. Gonzalez-Jurado, M. Reijnen, et al., Adv. Space Res. 17 (6–7), 219 (1996).CrossRefADSGoogle Scholar
  112. 112.
    L. V. Beloussov, N. N. Louchinskaia, and A. A. Stein, Dev. Genes Evol. 210 (2), 92 (2000).CrossRefGoogle Scholar
  113. 113.
    L. Gualandris-Parisot, D. Husson, F. Foulquier, et al., Adv. Space Res. 28 (4), 569 (2001).CrossRefADSGoogle Scholar
  114. 114.
    W. C. Salmon, M. C. Adams, and C. L. WatermanStorer, J. Cell Biol. 158 (1), 31 (2002).CrossRefGoogle Scholar
  115. 115.
    R. Gruener, R. Roberts, and R. Reistetter, Biol. Sci. Space 8 (4), 79 (1994).CrossRefGoogle Scholar
  116. 116.
    J. Boonstra, FASEB J. 13, S35 (1999).Google Scholar
  117. 117.
    R. A. Sausedo, J. L. Smith, and G. C. Schoenwolf, J. Comp. Neurol. 381 (4), 473 (1997).CrossRefGoogle Scholar
  118. 118.
    D. E. Ingber, FASEB J. 13 (Suppl.), S3 (1999).Google Scholar
  119. 119.
    S. Komazaki, J. Exp. Zoology. 301A, 204 (2004).CrossRefGoogle Scholar
  120. 120.
    A. J. Copp, N. D. E. Greene, and J. N. Murdoch, Nature 4, 784 (2003).Google Scholar
  121. 121.
    M. C. Ferreira and S. R. Hilfer, Dev. Biol. 159, 427 (1993).CrossRefGoogle Scholar
  122. 122.
    A. Lawson, H. Erson, and G. C. Schoenwolf, Anat. Rec. 262 (2), 153 (2001).CrossRefGoogle Scholar
  123. 123.
    N. V. Besov, S. V. Savel’ev, and E. A. Oigenbick, Results of Studies aboard Biosatalites (Moscow, 1992), p. 354 [in Russian].Google Scholar
  124. 124.
    H. L. Shen, Y. Chen and T. Sun, Space Med. Med. Eng. (Beijing) 11 (6), 447 (1998).Google Scholar
  125. 125.
    H. Schatten, M. L. Lewis and A. Chakrabari, Acta Astronaut. 49 (3–10), 399 (2001).CrossRefADSGoogle Scholar
  126. 126.
    J. I. Orban, S. J. Piert, T. S. Guryeva, and P. Y. Hester, J. Gravit. Physiol. 6 (2), 33 (1999).Google Scholar
  127. 127.
    D. V. Komissarova, T. S. Guryeva, and V. N. Sychev, Aviakosm. Ekol. Med. 45 (5), 52 (2011).Google Scholar
  128. 128.
    D. V. Komissarova, O. A. Dadasheva, T. S. Guryeva, and V. N. Sychev, Aviakosm. Ekol. Med. 47 (6), 24 (2013).Google Scholar
  129. 129.
    O. A. Dadasheva, T. S. Guryeva, E. I. Mednikova, et al., Aviakosm. Ekol. Med. 45 (2), 30 (2011).Google Scholar
  130. 130.
    O. A. Dadasheva, T. S. Guryeva, V. N. Sychev, and G. Jehns, Aviakosm. Ekol. Med. 32 (3), 38 (1998).Google Scholar
  131. 131.
    T. S. Guryeva, O. A. Dadasheva, E. N. Grigoryan, et al., Aviakosm. Ekol. Med. 37 (6), 50 (2003).Google Scholar
  132. 132.
    T. S. Guryeva, O. A. Dadasheva, E. I. Mednikova, et al., Aviakosm. Ekol. Med. 43 (6), 8 (2009).Google Scholar
  133. 133.
    O. A. Dadasheva, T. S. Guryeva, V. N. Sychev, et al., Aviakosm. Ekol. Med. 47 (5), 3 (2013).Google Scholar
  134. 134.
    D. V. Komissarova, T. S. Guryeva, O. A. Dadasheva, and V. N. Sychev, Aviakosm. Ekol. Med. 46 (5), 64 (2012).Google Scholar
  135. 135.
    D. V. Komissarova, T. S. Guryeva, O. A. Dadasheva, and V. N. Sychev, Aviakosm. Ekol. Med. 47 (4), 77 (2013).Google Scholar
  136. 136.
    R. Burton and A. Smith, in Ontogeny of Mammals in Microgravity, Ed. by O. G. Gazenko (Nauka, Moscow, 1988).Google Scholar
  137. 137.
    Ontogenesis of Mammals in Microgravity, NASA TM 103978 (1993).Google Scholar
  138. 138.
    L. V. Serova, Yu. V. Natochin, A. M. Nosovskii, et al., Aviakosm. Ekol. Med. 30 (6), 4 (1996).Google Scholar
  139. 139.
    S. V. Savel’ev, L. V. Serova, N. V. Besova, and A. M. Nosovskii, Aviakosm. Ekol. Med. 32 (2), 31 (1998).Google Scholar
  140. 140.
    L. V. Serova, Aviakosm. Ekol. Med. 35 (2), 32 (2001).Google Scholar
  141. 141.
    B. Fritzsch and L. L. Bruce, Am. Soc. Gravity Space Biol. Bull. 9, 97 (1995).Google Scholar
  142. 142.
    Y. Kojima, S. Sasaki, Y. Kubota, et al., Development 74 (6), 1142 (2000).Google Scholar
  143. 143.
    E. Shenker and K. Forkheim, Israel Aerospace Medicine Institute Report (1998).Google Scholar
  144. 144.
    L. V. Serova, Kosm. Biol. 23 (2), 11 (1989).Google Scholar
  145. 145.
    L. V. Serova, Microgravity and Adaptive Abilities of Mammals (Moscow, 1996) [in Russian].Google Scholar
  146. 146.
    L. V. Serova, L. A. Denisova, Z. I. Apanasenko, et al., Kosm. Biol. 16 (5), 62 (1982).Google Scholar
  147. 147.
    J. S. Tash, D. C. Johnson, and G. C. Enders, J. Appl. Physiol. 92, 1191 (2002).CrossRefGoogle Scholar
  148. 148.
    I. V. Ogneva, J. Appl. Physiol. 109, 1702 (2010).CrossRefGoogle Scholar
  149. 149.
    I. V. Ogneva, J. Biomed. Biotechnol. 2011, ID 393405 (2011).Google Scholar
  150. 150.
    I. V. Ogneva and I. B. Ushakov, in Atomic Force Microscopy Investigations into Biology: From Cell to Protein, Ed. by Christopher L. Frewin (InTech, 2012), p.325.Google Scholar
  151. 151.
    I. V. Ogneva, N. S. Biryukov, T. A. Leinsoo, and IM. Larina, PLOS ONE 9, 4:e96395 (2014).CrossRefADSGoogle Scholar
  152. 152.
    I. V. Ogneva, M. V. Maximova, and I. M. Larina, J. Appl. Physiol. 116 (10), 1315 (2014).CrossRefGoogle Scholar
  153. 153.
    S. F. Gilbert, Developmental Biology, 9th ed. (Sinauer Assoc., Sunderland, MA, 2010).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Institute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Sechenov First Moscow State Medical UniversityMinistry of Public Health of the Russian FederationMoscowRussia
  3. 3.Konstantinov Nuclear Physics InstituteKurchatov Institute National Research CenterOrlova Roscha, Gatchina, Leningrad RegionRussia

Personalised recommendations