Biophysics

, Volume 60, Issue 5, pp 752–758 | Cite as

The efficiency of non-photochemical fluorescence quenching of phycobilisomes by the orange carotenoid protein

  • P. M. Krasilnikov
  • D. V. Zlenko
  • I. N. Stadnichuk
Cell Biophysics
  • 34 Downloads

Abstract

We report on the theoretical efficiency of non-photochemical fluorescence quenching of phycobilisomes by the orange carotenoid protein. The created 3D computer model of the three-cylindrical phycobilisome core allowed us to determine the distances between the centers of mass of all of the phycobilin chromophores of the core and calculate the time and the average number of energy migration steps for the resulting non-radiative excitation transfer from the phycobilisomes to photosystem II. The obtained kinetic scheme equations for the path of the energy transfer confirm the incomplete interception of energy flow in the phycobilisome core by the orange carotenoid protein. The theoretical estimation of the rate of phycobilisome quenching is in good agreement with experimental data.

Keywords

allophycocyanin non-photochemical quenching orange carotenoid protein energy migration phycobilisome fluorescence 

Abbreviations

PBS

phycobilisome

APS

allophycocyanin

TE

terminal emitters

OCP

orange carotenoid protein

PS II

photosystem II

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Watanabe and M. Ikeuchi, Photosynth. Res. 116, 265 (2013).CrossRefGoogle Scholar
  2. 2.
    I. N. Stadnichuk, P. M. Krasilnikov, and D. V. Zlenko, Microbiology (Moscow) 84 (2), 101 (2015).CrossRefGoogle Scholar
  3. 3.
    A. N. Glazer, J. Biol. Chem. 261, 1 (1989).Google Scholar
  4. 4.
    A. A. Arteni, G. Ajlani, and T. J. Boekema, Biochim. Biophys. Acta 1787, 272 (2009).CrossRefGoogle Scholar
  5. 5.
    I. N. Stadnichuk, P. M. Krasilnikov, D. V. Zlenko, et al., Photosynth Res. 124, (3) 315 (2015).CrossRefGoogle Scholar
  6. 6.
    D. V. Zlenko, P. M. Krasilnikov, and I. N. Stadnichuk, J. Comput. Chem. (2015). doi 10.1080/07391102.2015.1042913 Google Scholar
  7. 7.
    M. G. Rakhimberdieva, I. N. Stadnichuk, I. V. Elanskaya, et al., FEBS Lett. 574, 85 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Wilson, G. Ajlani, J.-M. Verbavatz, et al., Plant Cell 18, 992 (2006).CrossRefGoogle Scholar
  9. 9.
    R. Brejc, R. Ficner, R. Huber, and S. Steinbacher, J. Mol. Biol. 249, 424 (1995).CrossRefGoogle Scholar
  10. 10.
    W. F. Beck and K. Sauer, J. Phys. Chem. 96, 4568 (1992).Google Scholar
  11. 11.
    A. V. Sharkov, I. V. Kruyukov, E. V. Khoroshilov, et al., Biochim. Biophys. Acta 1188, 349 (1994).CrossRefGoogle Scholar
  12. 12.
    D. Loos, M. Cotlet, F. De Schryver, et al., Biophys J. 87, 2598 (2004).CrossRefADSGoogle Scholar
  13. 13.
    R. MacColl, Biochim. Biophys. Acta 1667, 73 (2004).CrossRefGoogle Scholar
  14. 14.
    A. R. Holzwarth, E. Bittersma, W. Reuter, et al., Biophys. J. 57, 133 (1990).CrossRefGoogle Scholar
  15. 15.
    L. Tian, J. H. M. van Stokkum, R. B. M. Koehorst, et al., Chem. Soc. 133, 18304 (2011).CrossRefGoogle Scholar
  16. 16.
    I. N. Stadnichuk, M. F. Yanyushin, E. G. Maksimov, et al., Biochim. Biophys. Acta 1817, 1436 (2012).CrossRefGoogle Scholar
  17. 17.
    C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Freeman, San Francisco, 1980; Mir, Moscow, 1984), Vol.2.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • P. M. Krasilnikov
    • 1
  • D. V. Zlenko
    • 1
  • I. N. Stadnichuk
    • 2
  1. 1.Department of BiologyMoscow State UniversityMoscowRussia
  2. 2.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations