Advertisement

Biophysics

, Volume 60, Issue 5, pp 708–721 | Cite as

About the spatial organization of double-stranded DNA molecules in the cholesteric liquid-crystalline phase and dispersion particles of this phase

  • Yu. M. Yevdokimov
  • S. G. Skuridin
  • V. I. Salyanov
  • V. V. Volkov
  • L. A. Dadinova
  • O. N. Kompanets
  • E. I. Kats
Molecular Biophysics

Abstract

An attempt to generalize the well-grounded published data on the structure of the cholesteric phase that is formed by double-stranded DNA molecules and the authors’ own data concerning the packaging of these molecules in particles of a cholesteric liquid-crystalline dispersion has been made. Comparison of all of the data revealed a high probability of the existence of both “local” positional order and “long-range” orientation order in the arrangement of double-stranded DNA molecules in both the liquid-crystalline phase and a dispersion of particles of this phase formed under certain conditions. The emergence of the orientation order, that is, rotation of “quasinematic” layers of double-stranded DNA molecules by a small angle, determines the formation of a twisted (cholesteric) spatial structure with characteristic physicochemical properties.

Keywords

model helical structures and sections thereof dinoflagellate chromosome sections flakes (sections) of the cholesteric liquid-crystalline DNA phase dispersion particles of cholesteric liquid-crystalline DNA phase 

Abbreviations

CLCD

cholesteric liquid-crystalline dispersion

PEG

polyethylene glycol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Saupe, Angew. Chem. Int. Ed. Engl. 7 (2), 97 (1968).CrossRefGoogle Scholar
  2. 2.
    P.-G. De Gennes, The Physics of Liquid Crystals (Oxford Univ. Press, Oxford, 1974; Mir. Moscow, 1977).MATHGoogle Scholar
  3. 3.
    S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977; Mir, Moscow, 1980).Google Scholar
  4. 4.
    A. S. Sonin, Introduction to the Physics of Liquid Crystals (Nauka, Moscow, 1983) [in Russian].Google Scholar
  5. 5.
    A. P. Kapustin, Experimental Studies of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].Google Scholar
  6. 6.
    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981) [in Russian].Google Scholar
  7. 7.
    V. A. Belyakov and A. S. Sonin, Optics of Cholesteric Liquid Crystals (Nauka, Moscow, 1982) [in Russian].Google Scholar
  8. 8.
    Liquid-Crystalline Order in Polymers, Ed. by A. Blyumshtein (Nauka, Moscow, 1981) [in Russian].Google Scholar
  9. 9.
    S. P. Papkov and V. G. Kulichikhin, The Liquid Crystal State of Polymers (Khimiya, Moscow, 1977) [in Russian].Google Scholar
  10. 10.
    G. H. Brown and J. J. Walken, Liquid Crystals and Biological Structures (Academic, New York, 1979; Mir, Moscow, 1982).Google Scholar
  11. 11.
    Y. Bouligand and V. Norris, Biochimie 83 (2), 187 (2001).CrossRefGoogle Scholar
  12. 12.
    F. Livolant, J. Mol. Biol. 218 (1), 165 (1991).CrossRefGoogle Scholar
  13. 13.
    R. L. Rill, T. E. Strzelecka, M. W. Davidson, and D. H. van Winkle, Physica A 176 (1), 87 (1991).CrossRefADSGoogle Scholar
  14. 14.
    F. Livolant and A. Leforestier, Prog. Polym. Sci. 21 (6), 1115 (1996).CrossRefGoogle Scholar
  15. 15.
    F. Livolant, Physica A 176 (1), 117 (1991).CrossRefADSGoogle Scholar
  16. 16.
    Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, Liquid Crystalline Dispersions and DNA Nanoconstructs (Radiotekhnika, Moscow, 2008) [in Russian].Google Scholar
  17. 17.
    Y. Bouligand, in Solid State Physics, Suppl. 14, Ed. by L. Liebert (Academic, New York, 1978), pp. 259–294.Google Scholar
  18. 18.
    F. Livolant, A. M. Levelut, J. Doucet, and J. P. Benoit, Nature 339 (6227), 724 (1989).CrossRefADSGoogle Scholar
  19. 19.
    F. Livolant, J. Mol. Biol. 218 (1), 165 (1991).CrossRefGoogle Scholar
  20. 20.
    R. D. Kamien and J. V. Selinger, J. Phys.: Condens. Matter 13, R1 (2001).ADSGoogle Scholar
  21. 21.
    E. Senechal, G. Maret, and K. Dransfeld, Int. J. Biol. Macromol. 2 (4), 256 (1980).CrossRefGoogle Scholar
  22. 22.
    A. Gautier, L. Michel-Salamin, E. Tosi-Couture, et al., J. Ultrastr. Mol. Struct. Res. 97 (1–3), 10 (1986).CrossRefGoogle Scholar
  23. 23.
    G. de Haller, E. Kellenberger, and G. Rouiller, J. Microsc. (Paris) 3, 627 (1964).Google Scholar
  24. 24.
    E. Kellenberger and B. Arnold-Schulz-Gahmen, FEMS Microbiol. Lett. 100 (1–3), 361 (1992).CrossRefGoogle Scholar
  25. 25.
    L. Michel-Salamin, A. Gautier, M.-O. Soyer-Gobillard, et al., Electron. Microsc. 3, 1803 (1984).Google Scholar
  26. 26.
    E. Kellenberger, E. Carlemalm, J. Sechaud, et al., in Bacterial Chromatin, Ed. by C. O. Gualerzi and C. L. Pon (Springer, Berlin, 1986), pp. 11–25.Google Scholar
  27. 27.
    E. Kellenberger, Biophys. Chem. 29 (1–2), 51 (1988).CrossRefGoogle Scholar
  28. 28.
    M. H.Chow, K. T. H. Yan, M. J. Bennett, and J. T. Y. Wong, Eukaryot. Cell 9 (10), 1577 (2010).CrossRefGoogle Scholar
  29. 29.
    Y. Bouligand, M.-O. Soyer, and S. Puiseux-Dao, Chromosoma 24 (3), 251 (1968).CrossRefGoogle Scholar
  30. 30.
    F. Livolant and Y. Bouligand, Chromosoma 68 (1), 21 (1978).CrossRefGoogle Scholar
  31. 31.
    R. L. Rill, F. Livolant, H. C. Aldrich, and M. W. Davidson, Chromosoma 98 (4), 280 (1989).CrossRefGoogle Scholar
  32. 32.
    A. Leforestier and F. Livolant, Biol. Cell. 71 (1–2), 115 (1991).CrossRefGoogle Scholar
  33. 33.
    C. B. Stanley, H. Hong, and H. H. Strey, Biophys. J. 89 (4), 2552 (2005).CrossRefGoogle Scholar
  34. 34.
    A. Goldar, H. Thomson, and J. M. Seddon, J. Phys.: Condens. Matter 20 (3), 035102 (2008).ADSGoogle Scholar
  35. 35.
    J. Ubbink and T. Odijk, Biophys. J. 68 (1), 54 (1995).CrossRefADSGoogle Scholar
  36. 36.
    D. Grasso, S. Fasone, C. La Rosa, and V. Salyanov, Liq. Cryst. 9 (2), 299 (1991).CrossRefGoogle Scholar
  37. 37.
    A. R. Harris, R. D. Kamien, and T. C. Lubensky, Rev. Mod. Phys. 71 (5), 1745 (1999).CrossRefADSGoogle Scholar
  38. 38.
    S. A. Issaenko and A. R. Harris, Phys. Rev. E 61 (3), 2777 (2000).CrossRefADSGoogle Scholar
  39. 39.
    A. A. Kornyshev, S. Leikin, and S. V. Malinin, Eur. Phys. J. E 7, 83 (2002).CrossRefGoogle Scholar
  40. 40.
    A. G. Cherstvy, J. Phys. Chem. B 112 (40), 12585 (2008).CrossRefGoogle Scholar
  41. 41.
    T. Bellini, R. Cerbino, and G. Zanchetta, Top. Curr. Chem. 318, 225 (2011).CrossRefGoogle Scholar
  42. 42.
    V. A. Belyakov, V. P. Orlov, S. V. Semenov, et al., Liq. Cryst. 20 (6), 777 (1996).CrossRefGoogle Scholar
  43. 43.
    Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, et al., The CD Spectra of Double-stranded DNA Liquid Crystalline Dispersions (Nova Science, New York, 2011).CrossRefGoogle Scholar
  44. 44.
    S. V. Semenov and Yu. M. Yevdokimov, Biofizika 60 (2), 242 (2015).Google Scholar
  45. 45.
    O. N. Dyment, K. S. Kazanskii, and A. M. Miroshnikov, Glycols and Others Ethylene Oxide and Propylene Derivatives (Khimiya, Moscow, 1976) [in Russian].Google Scholar
  46. 46.
    M. Leonard, H. Hong, N. Easwar, and H. H. Strey, Polymer 42 (13), 5823 (2001).CrossRefGoogle Scholar
  47. 47.
    Yu. M. Yevdokimov, S. G. Skuridin, and V. I. Salyanov, Liq. Cryst. 3 (11), 1443 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • Yu. M. Yevdokimov
    • 1
  • S. G. Skuridin
    • 1
  • V. I. Salyanov
    • 1
  • V. V. Volkov
    • 2
  • L. A. Dadinova
    • 2
  • O. N. Kompanets
    • 3
  • E. I. Kats
    • 4
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of SpectroscopyRussian Academy of SciencesMoscowRussia
  4. 4.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations