Advertisement

Biophysics

, Volume 59, Issue 4, pp 646–650 | Cite as

Information theory of ageing: Studying the effect of bone marrow transplantation on the life span of mice

  • A. V. Karnaukhov
  • E. V. Karnaukhova
  • L. A. Sergievich
  • N. A. Karnaukhova
  • E. V. Bogdanenko
  • A. A. Smirnov
  • I. A. Manokhina
  • V. N. Karnaukhov
Complex Systems Biophysics

Abstract

In this paper the method of life span extension of multicellular organisms (human) using reservation of stem cells followed by autotransplantation has been proposed. As the efficiency of this method results from the information theory of ageing, it is important to verify it experimentally testing the basic concepts of the theory. Taking it into consideration, the experiment on bone marrow transplantation to old mice from young closely related donors of the inbred line was carried out. It has been shown that transplanted animals exhibited a survival advantage, a mean life span increased by 34% as compared to the control. This result not only demonstrates the efficiency of the proposed method for life span extension of multicellular organisms, but also confirms the basis of the information theory of ageing.

Keywords

bone marrow transplantation ageing germ line information theory of ageing life span GFP+ mice crossing-over recombination of genes surviving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Karnaukhov and E. V. Karnaukhova, Biophysics 54, 531 (2009).CrossRefGoogle Scholar
  2. 2.
    T. Rando, Nature 44, 1080 (2006).CrossRefADSGoogle Scholar
  3. 3.
    H. Bernstein, J. Theor. Biol. 69, 371 (1977).CrossRefGoogle Scholar
  4. 4.
    H. Gensler and H. Bernstein, The Quaterly Review of Biology 56, 279 (1981).CrossRefGoogle Scholar
  5. 5.
    A. N. Khokhlov, Ontogenez 34(5), 382 (2003).Google Scholar
  6. 6.
    A. N. Khokhlov, Ann. N.Y. Acad. Sci. 854, 519 (1998).MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    A. de Grey, The Mitochondrial Free Radical Theory of Aging (Austin, Texas: R.G. Landes Co., 1999).Google Scholar
  8. 8.
    Yu. M. Aponin and E. A. Aponina, Biofizika 53(4), 638 (2008) [no English version].Google Scholar
  9. 9.
    L. A. Gavrilov and N. S. Gavrilova, Biology of the Life Span (Nauka, Moscow, 1991) [in Russian].Google Scholar
  10. 10.
    Y. Park and S. L. Gerson, Annu. Rev. Med. 56, 495 (2005).CrossRefGoogle Scholar
  11. 11.
    S. M. Chambers, C. A. Shaw, C. Gatza, et al., PLoS Biology 5(8), 1750 (2007).CrossRefGoogle Scholar
  12. 12.
    D. B. Lombard, K. F. Chua, R. Mostoslavsky, et al., Cell 120, 497 (2005).CrossRefGoogle Scholar
  13. 13.
    A. Wilson, L. A. Shehadeh, H. Yu, and K. A. Webster, Genomics 11, 229 (2010).Google Scholar
  14. 14.
    V. M. Dil’man, Four Models of Medicine (Meditsina, Moscow, 1987) [in Russian].Google Scholar
  15. 15.
    V. V. Frol’kis and Kh. K. Muradyan, Aging. Evolution and Life Prolongation (Naukova Dumka, Kiev, 1992) [in Russian].Google Scholar
  16. 16.
    A. Weismann, Essays Upon Heredity and Kindred Biological Problems (Clarendon Press, Oxford, 1889).Google Scholar
  17. 17.
    V. N. Anisimov, Molecular and Physiological Mechanisms of Aging (Nauka, St.Petersburg, 2008) [in Russian].Google Scholar
  18. 18.
    M. S. Burtsev and S. A. Krivenko, Preprint, Keldysh Inst. Applied Math. (Moscow, 2007).Google Scholar
  19. 19.
    S. Kojima, M. Kaku, T. Kawata, et al., Cryobiology 67(3), 258 (2013).CrossRefGoogle Scholar
  20. 20.
    L. J. Fernyhough, V. A. Buchan, L. T. McArthur, and B. D. Hock, Bone Marrow Transplant. 48(1), 32 (2013).CrossRefGoogle Scholar
  21. 21.
    X. Zhu, F. Yuan, H. Li, et al., Zoolog Sci. 30(12), 1032 (2013).CrossRefGoogle Scholar
  22. 22.
    H. Attarian, Z. Feng, C. D. Buckner, et al., Bone Marrow Transplant. 17(3), 425 (1996).Google Scholar
  23. 23.
    P. Longoni, M. Milanesi, M. Di Nicola, et al., Bone Marrow Transplant. 8(11), 1480 (2013).CrossRefGoogle Scholar
  24. 24.
    I. Mitrus, A. Smagur, S. Giebel, et al., Cryobiology 67(3), 327 (2013).CrossRefGoogle Scholar
  25. 25.
    M. S. Micklem and J. F. Loutit, Tissue grafting and radiation (Academic Press, Inc., New York. 1966).Google Scholar
  26. 26.
    D. E. Harrison, Mech. Age Develop. 9, 409 (1979).CrossRefGoogle Scholar
  27. 27.
    D. E. Harrison and C. M. Astle, J. Exp. Med. 156, 1767 (1982).CrossRefGoogle Scholar
  28. 28.
    J. Shen, Y. Tsai, and N. M. DiMarco, Scientific reports 1(67), 1 (2011).Google Scholar
  29. 29.
    A. Tindall, C. Black, J. Finke, et al., Lancet 349, 254 (1997).CrossRefGoogle Scholar
  30. 30.
    R. K. Burt, M. C. Oliveira, S. J. Shah, et al., Lancet 381, 1116 (2013).CrossRefGoogle Scholar
  31. 31.
    J. M. van Laar, S. I. Nihtyanova, K. Naraghi, et al., Lancet 381, 2079 (2013).CrossRefGoogle Scholar
  32. 32.
    M. Okabe, M. Ikawa, K. Kominami, et al., FEBS Lett. 407, 313 (1997).CrossRefGoogle Scholar
  33. 33.
    I. V. Mitin and V. S. Rusakov, Analysis and Processing of Experimental Data (Physical Faculty, MSU, Moscow, 2009) [in Russian].Google Scholar
  34. 34.
    E. Birkenmeier, J. Barker, C. Vogler, et al., Blood 78, 3081 (1991).Google Scholar
  35. 35.
    L. Kamminga, R. Os, A. Ausema, et al., Stem Cells 23, 82 (2005).CrossRefGoogle Scholar
  36. 36.
    Li Jun, Zhang Yuan, and Liu Ge-Xiu. Acta Physiologica Sinica 62(1), 85 (2010).Google Scholar
  37. 37.
    M. V. Kovina, V. A. Zuev, G. O. Kagarlitskii, and Yu.M. Khodarovich, Tsitologiya 54, 883 (2012).Google Scholar
  38. 38.
    L. Singh, T. Brennan, J. Kim, et al., Stem Cells 31, 607 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. V. Karnaukhov
    • 1
  • E. V. Karnaukhova
    • 1
  • L. A. Sergievich
    • 1
  • N. A. Karnaukhova
    • 1
  • E. V. Bogdanenko
    • 2
  • A. A. Smirnov
    • 3
  • I. A. Manokhina
    • 1
  • V. N. Karnaukhov
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Institute of General Pathology and Pathophysiology Russian Academy of Medical SciencesMoscowRussia
  3. 3.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations