, Volume 58, Issue 6, pp 775–790 | Cite as

Structural nucleic acid nanotechnology: Liquid-crystalline approach

  • Yu. M. Yevdokimov
  • V. I. Salyanov
  • E. I. Katz
  • S. G. Skuridin
Molecular Biophysics


The properties of the particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules obtained as a result of phase exclusion of these molecules from water-salt polymer-containing solutions are briefly described. Physicochemical properties of quasinematic layers of dispersion particles and double-stranded DNA molecules in their content are taken into account in the course of developing fundamental background of the liquid-crystalline approach to the DNA structural nanotechnology. According to different versions of this approach, which is based on intraparticle gelation of cholesteric liquid-crystalline dispersions, spatial structures (DNA nanoconstructions, “rigid” DNA particles) with unique properties, are created. By means of atomic force microscopy images of “rigid” DNA particles of different type are registered. Specific properties of metallic nanoparticles (in particular, gold nanoparticles) are considered while developing the other approach to DNA structural nanotechnology, which provides the basis for “metallized” DNA nanoconstructions.


nanotechnology nucleic acids DNA liquid-crystalline dispersions DNA-based nanoconstructions structure of DNA liquid crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. M. Yevdokimov and V. V. Sytchev, Open Nanosci. J. 1(1), 19 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. M. Yevdokimov, V. I. Salyanov, and S. G. Skuridin, Nanostructures and Nanoconstructions Based on DNA (CRC Press (Taylor & Francis Group), Boca Raton — London — New York, 2012).CrossRefGoogle Scholar
  3. 3.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., in: Biotechnology 4: Systems and Synthetic Biology of Recent Developments in Biotechnology (Studium Press, New Delhi, 2014).Google Scholar
  4. 4.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., Structural DNA Nanotechnology: Liquid-Crystalline Approach (Transwold Research Network, Kerala, 2012). Scholar
  5. 5.
    N. C. Seeman, J. Theor. Biol. 99(2), 237 (1982).CrossRefGoogle Scholar
  6. 6.
    C. M. Niemeyer, M. Adler, S. Gao, et al., Angew. Chem. Int. Ed. 39(17), 3056 (2000).CrossRefGoogle Scholar
  7. 7.
    J. Shin and D. E. Bergstrom, Angew. Chem. Int. Ed. 36(1/2), 111 (1997).Google Scholar
  8. 8.
    E. Katz and I. Willner, Angew. Chem. Int. Ed. 43(45), 6042 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Minamisawa, K. Furusawa, T. Yamamoto, and T. Dobashi, Trans. Mater. Res. Soc. Jpn. 31(3), 739 (2006).Google Scholar
  10. 10.
    T. Dobashi, K. Furusawa, E. Kita, Y. Minamisawa, and T. Yamamoto, Langmuir 23(3), 1303 (2007).CrossRefGoogle Scholar
  11. 11.
    Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, DNA Liquid-Crystalline Dispersions and Nanoconstructions (CRC Press (Taylor & Francis Group), Boca Raton — London — New York, 2011).CrossRefGoogle Scholar
  12. 12.
    Z. Dogic, D. Frenkel, and S. Fraden, Phys. Rev. E 62(3), 3925 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Belyakov, V. P. Orlov, S. V. Semenov, et al., Liq. Crystals 20(6), 777 (1996).CrossRefGoogle Scholar
  14. 14.
    Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, et al., The CD Spectra of Double-Stranded DNA Liquid-Crystalline Dispersions (Nova Science Publishers, Inc., New York, 2011).CrossRefGoogle Scholar
  15. 15.
    A. Goldar, H. Thomson, and J. M. Seddon, J. Phys.: Condens. Mat. 20(3), 035102 (2008).ADSGoogle Scholar
  16. 16.
    A. A. Tager, Physicochemistry of Polymers (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  17. 17.
    R. J. Mumper and M. Jay, J. Phys. Chem. 96(21), 8626 (1992).CrossRefGoogle Scholar
  18. 18.
    Y.-H. Qi, Q.-Y. Zhang, and L. Xu, J. Chem. Inf. Comput. Sci. 42(6), 1471 (2002).CrossRefGoogle Scholar
  19. 19.
    P. A. Lessing and A. W. Erickson, J. Eur. Ceram. Soc. 23(16), 3049 (2003).CrossRefGoogle Scholar
  20. 20.
    P. Zhang and T. Kimura, Solvent Extract. Ion Exchange 24(2), 149 (2006).CrossRefGoogle Scholar
  21. 21.
    D. Gersanovsky, P. Colson, C. Houssier, and E. Fredericq, Biochim. Biophys. Acta 824(4), 313 (1985).CrossRefGoogle Scholar
  22. 22.
    J.-L. A. Shih and R. M. Brugger, Med. Phys. 19(3), 733 (1992).CrossRefGoogle Scholar
  23. 23.
    R. F. Martin, G. D’Cunha, M. Pardee, and B. J. Allen, Int. J. Radiat. Res. 54(2), 205 (1988).CrossRefGoogle Scholar
  24. 24.
    Yu. M. Yevdokimov, V. I. Salyanov, O. V. Kondrashina, et al., Int. J. Biol. Macromol. 37(4), 165 (2005).CrossRefGoogle Scholar
  25. 25.
    Yu. M. Yevdokimov, V. I. Salyanov, S. V. Akulinichev, et al., J. Biomater. Nanobiotechnol. 2(3), 281 (2011).CrossRefGoogle Scholar
  26. 26.
    Yu. M. Yevdokimov, V. I. Salyanov, E. V. Shtykova, et al., Open Nanosci. J. 2(1), 17 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    E. V. Shtykova, V. V. Volkov, V. I. Salyanov, and Yu. M. Yevdokimov, Eur. Biophys. J. 39(9), 1313 (2010).CrossRefGoogle Scholar
  28. 28.
    Yu. M. Yevdokimov, V. I. Salyanov, O. V. Kondrashina, et al., Zh. Eksper. Teor. Fiziki 131(3), 556 (2007).Google Scholar
  29. 29.
    L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchyogolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, Biomedical Application (Nauka, Moscow, 2008), pp. 70–78 [in Russian].Google Scholar
  30. 30.
    C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology (Imperial College Press, London, 2012).CrossRefGoogle Scholar
  31. 31.
    T. Hegmann, H. Qi, and V. M. Marx, J. Inorg. Organomet. Polym. Mater. 17(3), 483 (2007).CrossRefGoogle Scholar
  32. 32.
    G. L. Nealon, R. Greget, C. Dominguez, et al., Beilstein J. Org. Chem. 8, 349 (2012). doi: 10.3762/bjoc.8.39.CrossRefGoogle Scholar
  33. 33.
    O. Stamatoiu, J. Mirzaei, X. Feng, and T. Hegmann, Top. Curr. Chem. 318, 331 (2012). doi: 10.1007/128-2011-233.CrossRefGoogle Scholar
  34. 34.
    R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz, J. Am. Chem. Soc. 125(6) 1643 (2003).CrossRefGoogle Scholar
  35. 35.
    S. G. Skuridin, V. A. Dubinskaya, E. V. Shtykova, et al., Biol. Membrany 28(3), 191 (2011).Google Scholar
  36. 36.
    S. T. Zakhidov, S.M. Pavlyuchenkova, A. V. Samoilov, et al., Izv. RAN Ser. Biol., No. 6 (2013) (in press).Google Scholar
  37. 37.
    T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119(38), 8916 (1997).CrossRefGoogle Scholar
  38. 38.
    Nak Han Jang, Bull. Korean Chem. Soc. 23(12), 1790 (2002).CrossRefGoogle Scholar
  39. 39.
    D. Y. Petrovykh, H. Kimura-Suda, L. J. Whitman, and M. J. Tarlov, J. Am. Chem. Soc. 125(17), 5219 (2003).CrossRefGoogle Scholar
  40. 40.
    W. J. Parak, T. Pellegrino, C. M. Micheel, et al., Nano Lett. 3(1), 33 (2003).ADSCrossRefGoogle Scholar
  41. 41.
    J. J. Storhoff, A. A. Lazarides, R. C. Mucic, et al., J. Am. Chem. Soc. 122(19), 4640 (2000).CrossRefGoogle Scholar
  42. 42.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19(1–2), 35 (1961).ADSCrossRefGoogle Scholar
  43. 43.
    Yu. M. Yevdokimov, V. I. Salyanov, E. I. Katz, and S. G. Skuridin, Acta Naturae 4(4), 80 (2012).Google Scholar
  44. 44.
    Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., J. Biomater. Nanobiotechnol. 2(4), 461 (2011).CrossRefGoogle Scholar
  45. 45.
    Yu. M. Yevdokimov, E. V. Shtykova, V. I. Salyanov, and S. G. Skuridin, Biophysics 58(2), 148 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • Yu. M. Yevdokimov
    • 1
  • V. I. Salyanov
    • 1
  • E. I. Katz
    • 2
  • S. G. Skuridin
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations