Biophysics

, Volume 58, Issue 3, pp 315–323

Investigation of interaction of thrombin-binding aptamer with thrombin and prethrombin-2 by simulation of molecular dynamics

Molecular Biophysics

Abstract

Thrombin is a major component of blood clotting and involved in the formation of a fibrin clot. One of the precursors during thrombin maturation is prethrombin-2, with the presence of Arg363-Ile364 bond between the light and heavy chain of protein, the only distinction from thrombin. Prethrombin-2 is able to interact with less efficiency with a 15-mer thrombin-binding aptamer (TBA). We investigate the interaction of both known conformers of TBA with thrombin and prethrombin-2 by simulation of molecular dynamics. It was shown that TBA could interact with thrombin in both conformations with similar efficiency, although a stable complex of prethrombin-2 with TBA was found only in conformation identical with the aptamer structure, pdb 1HAO. Analysis of molecular dynamics of complexes offered an assumption that the motion of the exosite-1 forming loop Lys428-Ile438 determined the difference in affinity of the complexes of TBA with thrombin and prethrombin-2.

Keywords

TBA thrombin-binding aptamer thrombin prethrombin-2 molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Wolberg, Blood Reviews 21(3), 131 (2007).CrossRefGoogle Scholar
  2. 2.
    D. A. Lane, H. Philippou, and J. A. Huntington, Blood 106(8), 2605 (2005).CrossRefGoogle Scholar
  3. 3.
    I. S. R. Carter, A. L. Vanden Hoek, E. L. G. Pryzdial, et al., Thrombosis 2010(1), 1 (2010).CrossRefGoogle Scholar
  4. 4.
    T. L. Carlisle, P. E. Bock, and C. M. Jackson, J. Biol. Chem. 265(35), 22044 (1990).Google Scholar
  5. 5.
    M. Tsiang, A. K. Jain, K. E. Dunn, et al., J. Biol. Chem. 270(28), 16854 (1995).CrossRefGoogle Scholar
  6. 6.
    N. S. Petrera, A. S. Stafford, B. A. Leslie, et al., J. Biol. Chem. 284(38), 25620 (2009).CrossRefGoogle Scholar
  7. 7.
    C. A. Kertz, A. S. Stafford, J. C. Fredenburgh, and J. I. Weitz, J. Biol. Chem. 281(49), 37477 (2006).CrossRefGoogle Scholar
  8. 8.
    G. Mayer, Angew. Chem. Int. Ed. Engl. 48(15), 2672 (2009).CrossRefGoogle Scholar
  9. 9.
    L. C. Bock, L. C. Griffin, J. A. Latham, et al., Nature 355(6360), 564 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    J. Muller, B. Wulffen, B. Potzch, and G. Mayer, Chembiochem. 8(18), 2223 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Berezovski, R. Nutiu, Y. Li, et al., Anal. Chem. 75(6), 1382 (2003).CrossRefGoogle Scholar
  12. 12.
    G. Zhou, X. Huang, and Y. Qu, Biochem. Eng. J. 52(2), 117 (2010).MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Padmanabhan, K. P. Padmanabhan, J. D. Ferrara, et al., J. Biol. Chem. 268(24), 17651 (1993).Google Scholar
  14. 14.
    K. Padmanabhan and A. Tulinsky, Acta Crystallogr. D. Biol. Crystallogr. 52(Pt 2), 272 (1996).CrossRefGoogle Scholar
  15. 15.
    R. V. Reshetnikov, J. Sponer, O. I. Rassokhina, et al., Nucl. Acids Res. 39(22), 9789 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Haider, G. Parkinson, and S. Neidle, Biophys. J. 95(1), 296 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Hayward and B. de Groot, in: Methods in Molecular Biology), Ed. by A. Kukol (Humana Press, Totowa, NJ), 2008), vol. 443, pp. 89–104.Google Scholar
  18. 18.
    I. Massova and P. Kollman, Perspectives in Drug Discovery and Design 18(1), 113 (2000)CrossRefGoogle Scholar
  19. 19.
    P. Kollman, I. Massova, C. Reyes, et al., Acc. Chem. Res. 33(12), 889 (2000)CrossRefGoogle Scholar
  20. 20.
    P. J. Anderson, A. Nesset, and P. E. Bock, J. Biol. Chem. 278(45), 44482 (2003).CrossRefGoogle Scholar
  21. 21.
    C. A. Kretz, K. K. Cuddy, A. R. Stafford, et al., Thromb. Haemost. 103(1), 83 (2010).CrossRefGoogle Scholar
  22. 22.
    L. Meireles, M. Gur, A. Bakan, et al., Protein Sci. 20(10), 1645 (2011).CrossRefGoogle Scholar
  23. 23.
    K. Teilum, J. G. Olsen, and B. B. Kragelund, Biochim. Biophys. Acta 1814(8), 969 (2011).CrossRefGoogle Scholar
  24. 24.
    F. Spyrakis, A. BidonChanal, X. Barril, et al., Curr. Top. Med. Chem. 11(2), 192 (2011).CrossRefGoogle Scholar
  25. 25.
    A. Bakan and I. Bahar, Proc. Natl. Acad. Sci. USA 106(34), 14349 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    Q. Wu, V. Picard, M. Aiach, and J. E. Sadler, J. Biol. Chem. 269(5), 3725 (1994).Google Scholar
  27. 27.
    J. Vijayalakshmi, K. P. Padmanabhan, K. G. Mann, and A. Tulinsky, Protein Sci. 3,(12), 2254 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Orekhovich Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations