Biophysics

, Volume 58, Issue 3, pp 409–414 | Cite as

The interaction between nerve cells and carbon nanotube networks made by CVD process investigation

  • I. I. Bobrinetskiy
  • A. S. Seleznev
  • I. A. Gayduchenko
  • G. E. Fedorov
  • A. G. Domantovskiy
  • M. Yu. Presnyakov
  • R. Ya. Podchernyaeva
  • G. R. Mikhailova
  • I. A. Suetina
Cell Biophysics

Abstract

In this research we investigate neuroblastoma cells cultivated on single-walled carbon nanotubes networks made by CVD method on silicon substrates. The complex analysis of grown cells made by atomic force, electron microscopy and Raman spectroscopy was carried out and the effect of nanotube growth process on proliferation factor was investigated. It is shown that despite of a weak decrease in proliferation, cell morphology remains unchanged and no physical or chemical interaction between carbon nanotubes and cells is observed. The results of the research can be used to investigate the interaction between conductive nano- materials and cells for the development of neural replacement implants. Also they can be useful in bio-electronic interface investigation of signal propagation in neurons.

Keywords

single-walled carbon nanotubes neuroblastoma Neuro-2a atomic-force microscopy electronic microscopy Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Olakowska, I. Woszczycka-Korczyn-ska, H. Jędrzejowska-Szypulka, and J. Lewin-Kowalik, Folia Neuropathol. 48(4), 231 (2010).Google Scholar
  2. 2.
    Z. Yang, Y. Zhang, Y. Yang, et al., Nanomedicine 6(3), 427 (2010).CrossRefGoogle Scholar
  3. 3.
    B. S. Harrison and A. Atala, Biomaterials 28(2), 344 (2007).CrossRefGoogle Scholar
  4. 4.
    P. X. Ma, Adv. Drug Delivery Rev. 60(2), 184 (2008).CrossRefGoogle Scholar
  5. 5.
    T. Dviro, B. P. Timko, D. S. Kohane, and R. Langer, Nature Nanotechnology 6(1), 13 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Ageeva, I. I. Bobrinetskiy, V. K. Nevolin, et al., Izv. VUZov. Elektronika, No. 5, 33 (2008).Google Scholar
  7. 7.
    F. L. Y. Yuen, G. Zak, S. D. Waldman, and A. Docoslis, Cytotechnology 56(1), 9 (2008).CrossRefGoogle Scholar
  8. 8.
    C. M. Voge and J. P. Stegemann, J. Neural Eng. 8(1), 011001 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    I. I. Bobrinetskiy, R. A. Morozov, A. S. Seleznev, et al., Biomed. Tekhol. Radioelektron., No.3, 41 (2012).Google Scholar
  10. 10.
    V. M. Podgaetsky, I. I. Bobrinetskiy, S. V. Selishchev, and V. K. Nevolin, Optical Memory and Neural Networks (Information Optics), 17(2), 147 (2008).CrossRefGoogle Scholar
  11. 11.
    I. I. Bobrinetskiy, R. A. Morozov, A. S. Seleznev, et al., Byul. Eksperim. Biol. Med. 153(2), 227 (2012).Google Scholar
  12. 12.
    I. I. Bobrinetskiy, R. A. Morozov, A. S. Seleznev, et al., Klet. Transplant. Tkan. Inzhener. 6(1), 85 (2011).Google Scholar
  13. 13.
    I. I. Bobrinetskii, R. A. Morozov, V. M. Podgaetskii, et al., Biophysics 56, 194 (2011).CrossRefGoogle Scholar
  14. 14.
    D. Zhang, Y. Peng, H. Qi, et al., Sensors and Actuators B: Chem. 136(1), 113 (2009).CrossRefGoogle Scholar
  15. 15.
    D. Y. Lewitus, J. Landers, J. R. Branch, et al., Adv. Functional Mater. 21(14), 2624 (2011).CrossRefGoogle Scholar
  16. 16.
    Engineering the Bioelectronic Interface Applications to Analyte Biosensing and Protein Detection, Ed. By J. J. Davis (Royal Society of Chemistry, 2009).Google Scholar
  17. 17.
    G. Lamura, A. Andreone, Y. Yang, et al., J. Phys. Chem. C 111, 15154 (2007).CrossRefGoogle Scholar
  18. 18.
    M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Physics Reports 409, 47 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    R. U. Kharbiev, Manual on Experimental (preclinical) Study of New Pharmacological Substances (Meditsina, Moscow, 2005) [in Russian].Google Scholar
  20. 20.
    A. Sucapane, G. Cellot, M. Prato, et al., J. Nanoneurosci. 1, 1 (2008).Google Scholar
  21. 21.
    V. Raffa, G. Ciofani, and S. Nitodas, Carbon. 46(12), 1600 (2008).CrossRefGoogle Scholar
  22. 22.
    M. A. Hussain, M. A. Kabir, and A. K. Sood, Current Sci. 96(5), 664 (2009).Google Scholar
  23. 23.
    I. I. Bobrinetskiy and V. K. Nevolin, Mikrosistem. Tekhnika 4, 20 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. I. Bobrinetskiy
    • 1
  • A. S. Seleznev
    • 1
  • I. A. Gayduchenko
    • 2
  • G. E. Fedorov
    • 2
  • A. G. Domantovskiy
    • 2
  • M. Yu. Presnyakov
    • 2
  • R. Ya. Podchernyaeva
    • 3
  • G. R. Mikhailova
    • 3
  • I. A. Suetina
    • 3
  1. 1.National Research University of Electronic TechnologyZelenograd, MoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.Ivanovskiy Institute of VirologyMoscowRussia

Personalised recommendations