Biophysics

, Volume 57, Issue 4, pp 485–490 | Cite as

Membrane-modifying effect of taurine

  • M. Ya. Akhalaya
  • E. A. Kushnareva
  • E. Yu. Parshina
  • A. G. Platonov
  • E. E. Graevskaya
Cell Biophysics
  • 45 Downloads

Abstract

The effect of taurine on membrane-associated processes was studied in rat erythrocytes and peritoneal mast cells. EPR with a spin probe 5-DS revealed a significant decrease in the order parameter S of membrane phospholipid acyl chains in vitro after incubation of erythrocytes with taurine (10 mM, 1 h). Increased susceptibility of the erythrocyte membrane to peroxide-induced lysis was also observed. These effects suggested decreased membrane microviscosity resulting from less dense packing of the phospholipids. The differential effects of taurine on stimulated Ca-dependent functional activity of peritoneal mast cells (histamine liberation) upon different ways of administration (oral, intraperitoneal, or intramuscular) suggest an indirect and complex mechanism of taurine action in the organism.

Keywords

taurine membrane viscosity erythrocyte hemolysis mast cell ionophore A23187 compound 48/80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Y. Wang and K. Y. Liaw, J. Parenter. Enteral. Nutr. 15, 294 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Yamamoto, K. Ohmoto, S. Idegushi, et al., Nippon Shokakibyo Cakkai Zasshi 91, 1205 (1994).Google Scholar
  3. 3.
    J. Azuma, A. Sawamura, and N. Awata, Jpn. Circ. J. 56(1), 95 (1992).CrossRefGoogle Scholar
  4. 4.
    R. A. Chapman, M. S. Suleiman, and Y. E. Earn, Cardiovasc. Res. 27, 358 (1993).CrossRefGoogle Scholar
  5. 5.
    H. Satoh, Adv. Exp. Med. Biol. 442, 121 (1998).Google Scholar
  6. 6.
    R J. Huxtable, Prog. Neurobiol. 32, 471 (1989).CrossRefGoogle Scholar
  7. 7.
    L. Lima, F. Obregon, S. Cubillos, et al., Nutr. Neurosci. 4, 439 (2001).Google Scholar
  8. 8.
    J. D. Militante and J. B. Lombardini, Nutr. Neurosci. 5, 75 (2002).CrossRefGoogle Scholar
  9. 9.
    S. H. Hansen, Diabetes Metab. Res. 17, 330 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    T. C. Birdsall, Altern. Med. Rev. 3(2), 128 (1998).Google Scholar
  11. 11.
    J. Balkan, O. Kanbagli, G. Toker, and M. Uysal, Biol. Pharm. Bull. 25, 1231 (2002).CrossRefGoogle Scholar
  12. 12.
    J. A. Timbrell, V. Seabra, and C. J. Waterfield, Gen. Pharmacol. 26, 3 (1995).Google Scholar
  13. 13.
    R. C. Gupta and S. J. Kim, Crit. Care Shock 6, 191 (2003).ADSGoogle Scholar
  14. 14.
    S. Punna, C. Ballard, T. Hamaguchi, et al., J. Cardiovasc. Pharmacol. 24, 286 (1994).Google Scholar
  15. 15.
    E. P. Elizarova and L. V. Nedosugova, Adv. Exp. Med. Biol. 403, 583 (1996).Google Scholar
  16. 16.
    S. Schreier-Muccillo, D. Marsh, and I. C. Smith, Arch. Biochem. Biophys. 172, 1 (1976).CrossRefGoogle Scholar
  17. 17.
    B. J. Gaffney, in Method of Spin Labels. Theory and Application (Mir, Moscow, 1979).Google Scholar
  18. 18.
    J. R. White, T. Ishizaka, K. Ishizaka, and R. I. Sha’afi, Proc. Natl. Acad. Sci. USA 81, 3978 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    E. E. Graevskaya, M. Ya. Akhalaya, and E. N. Goncharenko, Byul. Eksperim. Biol. Med. 131, 396 (2001).Google Scholar
  20. 20.
    I. L. Thon and B. Uvnas, Acta Physiol. Scand. 71, 303 (1967).CrossRefGoogle Scholar
  21. 21.
    L. Goldstein, E. M. Davis-Amaral, and M. W. Musch, Kidney Int. 49, 1690 (1996).CrossRefGoogle Scholar
  22. 22.
    P. G. Kury and H. M. McConnel, Biochemistry 14, 2798 (1975).CrossRefGoogle Scholar
  23. 23.
    L. Ya. Gendel’, N. E. Yakovleva, T. V. Lelekova, et al., Izv. RAN Ser. Biol. 1, 103 (1997).Google Scholar
  24. 24.
    E. Yu. Parshina, L. Ya. Gendel’, and A. B. Rubin, Izv. RAN Ser. Biol. 6, 645 (2007).Google Scholar
  25. 25.
    D. Koutsouris, E. Delatour-Hanss, and M. Hanss, Biorheology 22(2), 119 (1985).Google Scholar
  26. 26.
    G. B. Schuller-Levis and E. Park, Neurochem. Res. 29(1), 117 (2004).CrossRefGoogle Scholar
  27. 27.
    M. Aridor, G Rajmilevich, M. A. Beaven, and R. Sagi-Eisenberg, Science 3262, 1569 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    D. D. Metcalfe, D. Baram, and Y. A. Mecori, Physiol. Rev. 77, 4 (1997).Google Scholar
  29. 29.
    T. Fukuda, S. J. Ackerman, C. E. Reed, et al., J. Immunol. 135, 1349 (1985).Google Scholar
  30. 30.
    S. Mitsutake and Y. Igarashi, J. Biol. Chem. 280, 40436 (2005).CrossRefGoogle Scholar
  31. 31.
    M. Ya. Akhalaya, A. A. Baizhumanov, and E. E. Graevskaya, Byul. Eksperim. Biol. Med. 141, 302 (2006).CrossRefGoogle Scholar
  32. 32.
    M. Akagi, Y. Katatuse, N. Fukuishi, et al., Biol. Pharm. Bull. 17, 732 (1994).CrossRefGoogle Scholar
  33. 33.
    A. C. Brooks, C. J. Whelan, and N. Purcell, Brit. J. Pharmacol. 128, 585 (1999).CrossRefGoogle Scholar
  34. 34.
    K. Szymanski and K. Winiarska, Postery Hig. Med. Dosw. 25(62), 75 (2008).Google Scholar
  35. 35.
    M. Ya. Akhalaya, Candidate’s Dissertation in Biology (MGU, Moscow, 1977).Google Scholar
  36. 36.
    J. Marcinkiewicz, A. Grabovska, J. Bereta, and T. Stelmaszynska, J. Leukoc. Biol. 58, 667 (1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. Ya. Akhalaya
    • 1
  • E. A. Kushnareva
    • 1
  • E. Yu. Parshina
    • 1
  • A. G. Platonov
    • 1
  • E. E. Graevskaya
    • 1
  1. 1.Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations