Advertisement

Biophysics

, Volume 56, Issue 6, pp 987–1004 | Cite as

Nanocrystalline ceria based materials—Perspectives for biomedical application

  • A. B. Shcherbakov
  • V. K. Ivanov
  • N. M. Zholobak
  • O. S. Ivanova
  • E. Yu. Krysanov
  • A. E. Baranchikov
  • N. Ya. Spivak
  • Yu. D. Tretyakov
Molecular Biophysics

Abstract

Nanocrystalline ceria possesses a unique complex of physical and chemical properties making it highly bioactive material. In this review, modern data on the action of nanocrystalline ceria on cells, micro- and macroorganisms are analyzed. Special attention is paid to the analysis of the factors affecting protective properties of CeO2 with respect to the living systems.

Keywords

ceria oxygen nonstoichiometry antioxidants antiviral action nanotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Ivanov, A. B. Shcherbakov, and A. V. Usatenko, Usp. Khimii 78(9), 924 (2009).Google Scholar
  2. 2.
    A. E. Baranchikov, O. S. Polezhaeva, V. K. Ivanov, and Yu. D. Tretyakov, CrystEngComm 12(11), 3531 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Tsunekawa, T. Fukuda, and A. Kasuya, Surf. Sci. 457, L437 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Turner, S. Lazar, B. Freitag, et al., Nanoscale 3, 3385 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    L. J. Wu, H. J. Wiesmann, A. R. Moodenbaugh, et al., Phys. Rev. B 69, 125415-1 (2004).ADSGoogle Scholar
  6. 6.
    J. Zhang, T. Naka, S. Ohara, et al., Phys. Rev. B 84, 045411 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    O. S. Polezhaeva, V. K. Ivanov, A. B. Shcherbakov, et al., Abstracts of Conf. Internat. Particip. «Nanotechnologies in Oncology», Moscow, October 09–10, 2009.Google Scholar
  8. 8.
    V. K. Ivanov, A. B. Shcherbakov, N. M. Zholobak, and O. S. Ivanova, Priroda 3, 47 (2011).Google Scholar
  9. 9.
    T. Pirmohamed, J. M. Dowding, S. Singh, et al., Chem. Commun. (Camb) 46(16), 2736 (2010).CrossRefGoogle Scholar
  10. 10.
    J. M. Perez, A. Asati, S. Nath, and A. Kaittanis, Small 4, 552 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Asati, S. Santra, C. Kaittanis, et al., Chem. Int. 48, 2308 (2009).CrossRefGoogle Scholar
  12. 12.
    C. Korsvik, S. Patil, S. Seal, and W. T. Self, Chem Commun (Camb) 14(10), 1056 (2007).CrossRefGoogle Scholar
  13. 13.
    E. G. Heckert, A. S. Karakoti, S. Seal, and W. T. Self, Biomaterials 29(18), 2705 (2008).CrossRefGoogle Scholar
  14. 14.
    A. S. Karakoti, S. Singh, A. Kumar, et al., J. Am. Chem. Soc. 131(40), 14144 (2009).CrossRefGoogle Scholar
  15. 15.
    A. B. Shcherbakov, V. K. Ivanov, T. V. Sirota, and Yu. D. Tretyakov, Dokl. RAN 437(2), 197 (2011).Google Scholar
  16. 16.
    A. S. Karakoti, N. A. Monteiro-Riviere, R. Aggarwal, et al., J. Minerals, Metals and Materials Society 60(3), 33 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Babu, A. Velez, K. Wozniak, et al., Chem. Phys. Lett. 442, 405 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    V. K. Ivanov, A. B. Shcherbakov, I. G. Ryabokon’, et al., Dokl. RAN 430(5), 639 (2010).Google Scholar
  19. 19.
    L. D. Falcao, A. P. Falcao, and E. F. Gris, Braz. J. Food Technol. 11(1), 63 (2008).Google Scholar
  20. 20.
    V. K. Ivanov, A. V. Usatenko, and A. B. Shcherbakov, Zh. Neorgan. Khimii 54(10), 1596 (2009).Google Scholar
  21. 21.
    H. F. Poon, V. Calabrese, G. Scapagnini, and D. A. Butterfield, Clin. Geriatr. Med. 20, 329 (2004).CrossRefGoogle Scholar
  22. 22.
    V. M. Darley-Usmar, V. J. O’Leary, and M. T. Wilson, Free Radical Res. Commun. 16(1), 13.1 (1992).Google Scholar
  23. 23.
    J. S. Beckman, H. Ischiropoulos, L. Zhu, et al., Free Radical Res. Commun. 16(1), 13.4 (1992).Google Scholar
  24. 24.
    J. S. Beckman, T. W. Beckman, J. Chen, et al., Proc. Natl. Acad. Sci. USA 87, 1620 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    P. Evans and B. Halliwell, Ann. N. Y. Acad. Sci. 884, 19 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    D. Harman, Radiat. Res. 16, 753 (1962).CrossRefGoogle Scholar
  27. 27.
    D. Harman, J. Gerontol. 11(3), 298 (1956).Google Scholar
  28. 28.
    D. Schubert, R. Dargusch, et al., Biochem. Biophys. Res. Commun. 342(1), 86 (2006).CrossRefGoogle Scholar
  29. 29.
    L. K. Limbach, Y. Li, R. N. Grass, et al., Environ. Sci. Technol. 39, 9370 (2005).CrossRefGoogle Scholar
  30. 30.
    M. Fall, M. Guerbet, B. Park, et al., Nanotoxicology 1, 227 (2007).CrossRefGoogle Scholar
  31. 31.
    E. Hyun-Jeong and J. Choi, Toxicology Lett. 187(2), 77 (2009).CrossRefGoogle Scholar
  32. 32.
    E.-J. Park, J. Choi, et al., Toxicology 245(1–2), 90 (2008).CrossRefGoogle Scholar
  33. 33.
    W. Lin, Y. W. Huang, et al., Int. J. Toxicol. 25(6), 451 (2006).MathSciNetCrossRefGoogle Scholar
  34. 34.
    T. J. Brunner, P. Wick, et al., Environ. Sci. Technol. 40(14), 4374 (2006).CrossRefGoogle Scholar
  35. 35.
    B. Park, P. Martin, et al., Part. Fibre. Toxicol. 4, 12 (2007).CrossRefGoogle Scholar
  36. 36.
    B. Park, K. Donaldson, et al., Inhalation Toxicology 20(6), 547 (2008).CrossRefGoogle Scholar
  37. 37.
    T. Xia, M. Kovochich, et al., ACS Nano 2(10), 2121 (2008).CrossRefGoogle Scholar
  38. 38.
    J. Niu, A. Azfer, et al., Cardiovasc. Res. 73(3), 549 (2007).CrossRefGoogle Scholar
  39. 39.
    W. H. Wu, X. Sun, et al., Biochem. Biophys. Res. Commun. 373(2), 315 (2008).CrossRefGoogle Scholar
  40. 40.
    R. W. Tarnuzzer, J. Colon, et al., Nano Lett. 5(12), 2573 (2005).ADSCrossRefGoogle Scholar
  41. 41.
    M. Das, S. Patil, et al., Biomaterials 28(10), 1918 (2007).CrossRefGoogle Scholar
  42. 42.
    M. Auffan, J. Rose, T. Orsiere, et al., Nanotoxicology 3(2), 161 (2009).CrossRefGoogle Scholar
  43. 43.
    S.-F. Huanga, Z.-Y. Li, X.-Q. Wanga, et al., Ecotoxicology and Environmental Safety 73(1), 89 (2010).CrossRefGoogle Scholar
  44. 44.
    E. G. Heckert, S. Seal, and W. T. Self, Environ. Sci. Technol. 42(13), 5014 (2008).CrossRefGoogle Scholar
  45. 45.
    W. Yang, T. Wang, H. Lei, and Y. Yang, Wei Sheng Yan Jiu 28(2), 91 (1999).Google Scholar
  46. 46.
    J. M. Berg, A. Romoser, N. Banerjee, et al., Nanotoxicology 3(4), 276 (2009).CrossRefGoogle Scholar
  47. 47.
    S. Patil, A. Sandberg, E. Heckert, et al., Biomaterials 28(31), 4600 (2007).CrossRefGoogle Scholar
  48. 48.
    W. H. Suh, K. S. Suslick, G. D. Stucky, et al., Progress in Neurobiology 87, 133 (2009).CrossRefGoogle Scholar
  49. 49.
    M. Safi, H. Sarrouj, O. Sandre, et al., Nanotechnology 21(14), 145103 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    S. S. Hardas, D. A. Butterfield, R. Sultana, et al., Toxicol Sci. 116(2), 562 (2010).CrossRefGoogle Scholar
  51. 51.
    R. A. Yokel, R. L. Florence, J. M. Unrine, et al., Nanotoxicology 3, 234 (2009).CrossRefGoogle Scholar
  52. 52.
    B. K. Pierscionek, Y. Li, A. A. Yasseen, et al., Nanotechnology 21(3), 035102 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    A. Asati, S. Santra, C. Kaittanis, and J. M. Perez, ACS Nano. 4(9), 5321 (2010).CrossRefGoogle Scholar
  54. 54.
    Y.-W. Zhang, R. Si, C.-S. Liao, and C.-H. Yan, J. Phys. Chem. B 107(37), 10159 (2003).CrossRefGoogle Scholar
  55. 55.
    M. M. Natile, G. Boccaletti, and A. Glisenti, Chem. Mater. 17, 6272 (2005).CrossRefGoogle Scholar
  56. 56.
    N. M. Zholobak, A. B. Shcherbakov, V. K. Ivanov et al., Biol. Sistemy 2(1), 3 (2010).Google Scholar
  57. 57.
    N. M. Zholobak, Z. M. Olevinskaya, N. Ya. Spivak, et al., Mikrobiol. Zh. 72(3), 42 (2010).Google Scholar
  58. 58.
    A. S. Karakoti, N. A. Monteiro-Riviere, R. Aggarwal, et al., J. Minerals, Metals and Materials Soc. 60(3), 33 (2008).CrossRefGoogle Scholar
  59. 59.
    Y. T. Tsai, J. Oca-Cossio, K. Agering, et al., Nanomed. 2(3), 325 (2007).CrossRefGoogle Scholar
  60. 60.
    A. S. Karakoti, S. V. N. T. Kuchibhatla, K. S. Babu, and S. Seal, J. Phys. Chem. C 111(46), 17232 (2007).CrossRefGoogle Scholar
  61. 61.
    S. Maensiri, C. Masingboon, P. Laokul, et al., Crystal Growth & Design, 7(5), 950 (2007).CrossRefGoogle Scholar
  62. 62.
    N. Izu, I. Matsubara, T. Itoh, et al., Bull. Chem. Soc. Japan 81(6), 761 (2008).CrossRefGoogle Scholar
  63. 63.
    V. K. Ivanov, O. S. Polezhaeva, A. S. Shaporev, et al., Zh. Neorgan. Khimii 55(3), 368 (2010).Google Scholar
  64. 64.
    O. S. Ivanova, T. O. Shekunova, V. K. Ivanov, et al., Dokl. RAN 437(5), 638 (2011).Google Scholar
  65. 65.
    A. Vincent, S. Babu, E. Heckert, et al., ACS Nano 3(5), 1203 (2009).CrossRefGoogle Scholar
  66. 66.
    S. Patil, S. Reshetnikov, M. K. Haldar, et al., J. Phys. Chem. B 111, 8437 (2007).Google Scholar
  67. 67.
    V. K. Ivanov, O. S. Polezhaeva, A. B. Shcherbakov, et al., Zh. Neorgan. Khimii 55(1), 3 (2010)Google Scholar
  68. 68.
    C. P. Leamon, A. L. Jackman. C. P. Leamon, and A. L. Jackman, Vitam Horm. 79, 203 (2008).CrossRefGoogle Scholar
  69. 69.
    A. B. Shcherbakov, N. M. Zholobak, V. K. Ivanov et al., Biotekhnologiya 4(1), 9 (2011). 2011.Google Scholar
  70. 70.
    Yu. A. Gasymova, O. S. Ivanova, A. B. Shcherbakov, et al., Dokl. RAN (2011, in press).Google Scholar
  71. 71.
    B. A. Rzigalinski, K. Meehan, R. M. Davis, et al., Nanomedicine (Lond) 1(4), 399 (2006).CrossRefGoogle Scholar
  72. 72.
    I. Celardo, M. De Nicola, C. Mandoli, et al., ACS Nano 5(6), 4537 (2011).CrossRefGoogle Scholar
  73. 73.
    N. Singh, E. Amateis, J. E Mahaney, et al., FASEB J. 22, 624.2 (2008).CrossRefGoogle Scholar
  74. 74.
    S. M. Hirst, A. S. Karakoti, R. D. Tyler, et al., Small 5(24), 2848 (2009).CrossRefGoogle Scholar
  75. 75.
    F. S. Archibald and I. Fridovich, J. Bacteriol. 146(3), 928 (1981).Google Scholar
  76. 76.
    C. Marty-Teysset, F. de la Torre, and J.-R. Garel, Appl Environ Microbiol. 66(1), 262 (2000).CrossRefGoogle Scholar
  77. 77.
    N. M. Zholobak, A. B. Shcherbakov, V. K. Ivanov, et al., in VI-th International conference «Bioresources and Viruses» September 14–17, 2010 (Kyiv, 2010), pp. 39–40.Google Scholar
  78. 78.
    N. M. Zholobak, A. B. Shcherbakov, V. K. Ivanov, et al, Antiviral Research 90(2), A67 (2011).CrossRefGoogle Scholar
  79. 79.
    N. M. Zholobak, L. D. Krivokhatskaya, A. B. Shcherbakov, et al., Abstracts of Conf. Internat. Particip. «Nanotechnologies in Oncology», Moscow, October 30, 2010 (Moscow, 2010), p. 45.Google Scholar
  80. 80.
    E. Yu. Krysanov, V. K. Ivanov, T. B. Demidova, and O. S. Ivanova, 6th International Meeting on the Environmental Effects of Nanoparticles and Nanomaterials. The Royal Society, London, Monday 19th–Wednesday 21st September 2011.Google Scholar
  81. 81.
    J. Chen, S. Patil, S. Seal, and J. F. McGinnis, Nature Nanotechnology 1, 142 (2006).ADSCrossRefGoogle Scholar
  82. 82.
    G. A. Silva, Nature Nanotechnology 1(2), 92 (2006).ADSCrossRefGoogle Scholar
  83. 83.
    X. Zhou, L. L. Wong, A. S. Karakoti, et al., PLoS One 6(2), e16733 (2011).ADSCrossRefGoogle Scholar
  84. 84.
    J. Chen, S. Patil, S. Seal, et al., Adv. Exp. Med. Biol. 53, 9 (2008).Google Scholar
  85. 85.
    J. F. Mcginnis, J. Chen, L. Wong, et al., United States Patent 20060246152. Publication Date: 11/02/2006.Google Scholar
  86. 86.
    N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, et al., J. Photochem. Photobiol. B 102, 32 (2011).CrossRefGoogle Scholar
  87. 87.
    B. A. Rzigalinski and A. M. Clark, WO/2007/002662 Publication Date: 04.01.2007.Google Scholar
  88. 88.
    W. M. Sigmund, Yi-yang Tsai, I. Constantinidis, et al., WO/2008/064357 Publication Date: 29.05.2008.Google Scholar
  89. 89.
    J. Colon, N. Hsieh, A. Ferguson, et al., Nanomedicine 6(5), 698 (2010).CrossRefGoogle Scholar
  90. 90.
    G. T. Wondrak, Antioxidants & Redox Signaling 11(12), 3015 (2009).CrossRefGoogle Scholar
  91. 91.
    J. F. Mcginnis, L. L. Wong, and X. Zhou, United States Patent Application 20090269410 Publication Date: 10/29/2009.Google Scholar
  92. 92.
    K. Sugaya and S. Seal, United States Patent Application 20080166412 Publication Date: 07/10/2008.Google Scholar
  93. 93.
    C. Mandoli, F. Pagliari, S. Pagliari, et al., Adv. Funct. Mater. 20, 1617 (2010).CrossRefGoogle Scholar
  94. 94.
    B. A. Rzigalinski, Technology in Cancer Research & Treatment 4, 651 (2005).Google Scholar
  95. 95.
    H. Zha, Z. Cheng, J. Chen, R. Hu, et al., Biol. Trace Elem Res. 7, 36 (2011).Google Scholar
  96. 96.
    A. Cohen, J. A. Karfakis, M. D. Kurnick, and B. Rzigalinski, FASEB J. 22, 624.1 (2008).Google Scholar
  97. 97.
    S. Olgun, B. Rzigalinski, and C. M. Reilly, J. Immunol. 24, 162 (2006).Google Scholar
  98. 98.
    N. Singh, C. A. Cohen, and B. A. Rzigalinski, Ann. N. Y. Acad. Sci. 1122(1), 219 (2007).ADSCrossRefGoogle Scholar
  99. 99.
    I. Celardo, J. Z. Pedersen, E. Traversa, and L. Ghibelli, Nanoscale 3, 1411 (2011).ADSCrossRefGoogle Scholar
  100. 100.
    B. D. Angelo, S. Santucci, E. Benedetti, et al., Current Nanoscience 5(2), 167 (2009).CrossRefGoogle Scholar
  101. 101.
    K. A. Amin, M. S. Hassan, El-S.T. Awad, and K. S. Hashem, Int. J. Nanomedicine 6, 143 (2011).CrossRefGoogle Scholar
  102. 102.
    P. Huang, J. Li, S. Zhang, et al., Environ Toxicol Pharmacol. 31(1), 25 (2011).CrossRefGoogle Scholar
  103. 103.
    J. Niu, K. Wang, and P. E. Kolattukudy, J. Pharmacol. Exp. Ther. 338(1), 53 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. B. Shcherbakov
    • 1
  • V. K. Ivanov
    • 2
  • N. M. Zholobak
    • 1
  • O. S. Ivanova
    • 2
  • E. Yu. Krysanov
    • 3
  • A. E. Baranchikov
    • 2
  • N. Ya. Spivak
    • 1
  • Yu. D. Tretyakov
    • 4
  1. 1.Zabolotny Institute of Microbiology and VirologyNAS of UkraineKievUkraine
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  4. 4.Material Science DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations