Advertisement

Biophysics

, 56:444 | Cite as

Redox regulation of cellular processes: A biophysical model and experiment

  • G. G. Martinovich
  • I. V. Martinovich
  • S. N. Cherenkevich
Cell Biophysics

Abstract

A model for the redox regulation of the functional state of the cell has been constructed on the basis of representation of electron transfer processes by equivalent electric circuits. The mechanism of action of redox-active molecules on biosystems has been discussed in terms of circuit theory. A method for determining the parameters of cellular redox sensors has been proposed. It has been established that the concentration and redox potential of compounds entering the cell are the main regulatory parameters of redox signals for the cell. It has been experimentally shown that the calcium response to hydrogen peroxide in rat C6 glioma cells and human FL amnion cells depends on the redox-buffer capacity of cells.

Keywords

redox state redox regulation oxidative stress effective redox potential redox-buffer capacity reactive oxygen species 2′,7′-dichlorodihydrofluorescein 

References

  1. 1.
    F. Rusnak and T. Reiter, TIBS 25, 527 (2000).Google Scholar
  2. 2.
    C. Cooper, R. P. Patel, P. S. Brookes, and V. M. Darley-Usmar, Trends Biochem. Sci. 27, 489 (2002).CrossRefGoogle Scholar
  3. 3.
    H. Sauer, M. Wartenberg, and J. Hescheler, Cell Physiol. Biochem. 11, 173 (2001).CrossRefGoogle Scholar
  4. 4.
    G. G. Martinovich and S. N. Cherenkevich, Redox Processes in Cells (BGU, Minsk, 2008) [in Russian].Google Scholar
  5. 5.
    J. Y. M. Janssen-Heininger, B. T. Mossman, N. H. Heintz, et al., Free Rad. Biol. Med. 45, 1 (2008).CrossRefGoogle Scholar
  6. 6.
    F. Q. Schafer and G. R. Buettner, Free Rad. Biol. Med. 30, 1191 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Kemp, Y. M. Go, and D. P. Jones, Free Radic. Biol. Med. 44, 921 (2008).CrossRefGoogle Scholar
  8. 8.
    C. C. Winterbourn and M. B. Hampton, Free Rad. Biol. Med. 45, 549 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Smith, E. Ladi, M. Mayer-Proschel, and M. Noble, Proc. Natl. Acad. Sci. USA 97, 10032 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    G. G. Martinovich and S. N. Cherenkevich, Vestn. Belorus. Un-ta Ser. 1, No. 1, 28 (2004).Google Scholar
  11. 11.
    G. G. Martinovich, S. N. Cherenkevich, and H. Sauer, Eur. Biophys. J. 34(7), 937 (2005).CrossRefGoogle Scholar
  12. 12.
    D. P. Jones, Methods Enzymol. 348, 93 (2002).CrossRefGoogle Scholar
  13. 13.
    Y. M. Go, J. J. Gipp, R. T. Mulcahy, and D. P. Jones, J. Biol. Chem. 279, 5837 (2004).CrossRefGoogle Scholar
  14. 14.
    D. P. Jones, Y. M. Go, C. L. Anderson, et al., FASEB J. 18, 1246 (2004).Google Scholar
  15. 15.
    D. P. Jones, Am. J. Physiol. Cell Physiol. 295, C849 (2008).CrossRefGoogle Scholar
  16. 16.
    G. G. Martinovich and S. N. Cherenkevich, Vestn. Belorus. Un-ta Ser. 1, No. 3, 14 (2004).Google Scholar
  17. 17.
    G. G. Martinovich, I. V. Martinovich, S. N. Cherenkevich, and H. Sauer, Cell Biochem. Biophys. 58(2), 75 (2010).CrossRefGoogle Scholar
  18. 18.
    G. G. Martinovich, I. V. Martinovich and S. N. Cherenkevich, Biofizika 53, 618 (2008) [no English version].Google Scholar
  19. 19.
    G. G. Martinovich, I. V. Martinovich, E. N. Golubeva, and S. N. Cherenkevich, Biofizika 54, 846 (2009) [no English version].Google Scholar
  20. 20.
    D. P. Jones, J. Intern. Med. 268, 432 (2010).CrossRefGoogle Scholar
  21. 21.
    S. N. Cherenkevich and A. I. Khmel’nitskii, Transport of Substances through Biological Membranes (BGU, Minsk, 2007) [in Russian].Google Scholar
  22. 22.
    D. P. Jones, J. L. Carlson, V. C. Mody, et al., Free Radic. Biol. Med. 28, 625 (2000).CrossRefGoogle Scholar
  23. 23.
    B. Yang, A. Kotani, K. Arai, and F. Kusu, Anal. Sci. 17, 599 (2001).CrossRefGoogle Scholar
  24. 24.
    R.V. Bensasson, A. Jossang, A. Zahir, et al., Free Radic. Biol. Med. 27, 95 (1999).CrossRefGoogle Scholar
  25. 25.
    V. Zoete, F. Bailly, F. Maglia, et al., Free Radic. Biol. Med. 26, 1261 (1999).CrossRefGoogle Scholar
  26. 26.
    V. Zoete, M. Rougee, A. T. Dinkova-Kostova, et al., Free Radic. Biol. Med. 36, 1418 (2004).CrossRefGoogle Scholar
  27. 27.
    M. Kobayashi and M. Yamamoto, Antioxid. Redox Signaling 7, 385 (2005).CrossRefGoogle Scholar
  28. 28.
    R. V. Bensasson, V. Zoete, A. T. Dinkova-Kostova, and P. Talalay, Chem. Res. Toxicol. 21, 805 (2008).CrossRefGoogle Scholar
  29. 29.
    R. V. Bensasson, V. Zoete, G. Berthier, et al., Chem. Biol. Interact. 186(2), 118 (2010).CrossRefGoogle Scholar
  30. 30.
    E. B. Burlakova, Ros. Khim. Zh. 51(1), 3 (2007).Google Scholar
  31. 31.
    E. N. Kukhtina, N. G. Lhrapova, E. B. Burlakova, et al., Dokl. AN SSSR 272, 729 (1983).Google Scholar
  32. 32.
    G. G. Martinovich, S. N. Cherenkevich, A. A. Denisov, et al., Izv. NAN Belarusi Ser. Med.-biol. Nauk, No. 4, 70 (2002).Google Scholar
  33. 33.
    M. Wartenberg, H. Deidershagen, J. Hescheler, and H. Sauer, J. Biol. Chem. 274, 27759 (1999).CrossRefGoogle Scholar
  34. 34.
    K. Bielefeldt, C. Whiteis, R. Sharma, et al., Am. J. Physiol. 272, G1439 (1997).Google Scholar
  35. 35.
    M. Smith, P. Herson, K. Lee, et al., J. Physiol. 547, 417 (2003).CrossRefGoogle Scholar
  36. 36.
    S. Nam, S. Jung, C. Yoo, et al., Yonsei Med. J. 43(2), 229 (2002).Google Scholar
  37. 37.
    R. J. Van Klaveren, P. H. Hoet, M. Demedts, and B. Nemery, Free Radic. Res. 30, 371 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. G. Martinovich
    • 1
  • I. V. Martinovich
    • 1
  • S. N. Cherenkevich
    • 1
  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations