Biophysics

, Volume 56, Issue 2, pp 194–199 | Cite as

A study of bulky nanotube composites based on albumin by high-resolution microscopy

  • I. I. Bobrinetskii
  • R. A. Morozov
  • V. M. Podgaetskii
  • M. M. Simunin
  • I. V. Yaminskii
Molecular Biophysics

Abstract

The structure of biocompatible nanocomposites formed by the action of laser radiation on an aqueous dispersion of albumin with carbon nanotubes has been studied by the high-resolution methods of atomic force and transmitting electron microscopy. It has been shown that the nanocomposites have a bulky structure consisting of conglomerates of nanotubes uniformly distributed in the albumin matrix. The results of the study may be useful in the production of filling nanomaterials for implants of biological tissues and organs and the control of their quality.

Keywords

albumin nanotubes nanocomposites atomic force microscopy transmitting electron microscopy Kelvin probe method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991).CrossRefADSGoogle Scholar
  2. 2.
    E. G. Rakov, Nanotubes and Fullerenes (Universitetskaya Kniga, Logos, Moscow, 2006) [in Russian].Google Scholar
  3. 3.
    P. Mark, M. P. Mattson, R. C. Haddon, and A. M. Rao, J. Mol. Neurosci. 14(3), 175 (2000).CrossRefGoogle Scholar
  4. 4.
    L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, Nano Lett. 6(3), 562 (2006).CrossRefADSGoogle Scholar
  5. 5.
    V. M. Podgaetskii, V. V. Savranskii, M. M. Simunin, and M. A. Kononov, Kvant. Elektron. 37(9), 801 (2007).CrossRefADSGoogle Scholar
  6. 6.
    A. I. Nevorotin, Introduction to Laser Surgery (Spetslit, SPb, 2000) [in Russian].Google Scholar
  7. 7.
    I. I. Bobrinetskii, V. N. Kukin, V. K. Nevolin, and M. M. Simunin, Izv. VUZov Elektronika no. 4, 3 (2007).Google Scholar
  8. 8.
    I. I. Bobrinetskii, V. K. Nevolin, and M. M. Simunin, Khim. Tekhol no. 2, 58 (2007).Google Scholar
  9. 9.
    I. I. Bobrinetskii, V. K. Nevolin, A. A. Stroganov, and Yu. A. Chaplygin, RF Patent no. 2317940 of 14.03.2006.Google Scholar
  10. 10.
    M. L. Ferrer, R. Duchowicz, B. Carrasco, et al., Biophys. J. 80(5), 2422 (2001).CrossRefGoogle Scholar
  11. 11.
    I. V. Andreeva, V. N. Bagratashvili, L. P. Ichkitidze, et al., Med. Tekhnika no. 6, 1 (2009).Google Scholar
  12. 12.
    M. Nonnenmacher, M. P. o’Boyle, and H. K. Wickramsasinghe, Appl. Phys. Lett. 58, 2921 (1991).CrossRefADSGoogle Scholar
  13. 13.
    I. I. Bobrinetskii and V. V. losev, Izv. VUZov Elektronika no. 6, 85 (2008).Google Scholar
  14. 14.
    D. Elgrabli, S. Abella-Gallart, O. Aguerre-Chariol, et al., Nanotoxicology 1(4), 266 (2007).CrossRefGoogle Scholar
  15. 15.
    J.-W. Shen, T. Wu, Q. Wang, and Y. Kang, Biomaterials 29(28), 3847 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. I. Bobrinetskii
    • 1
  • R. A. Morozov
    • 1
  • V. M. Podgaetskii
    • 1
  • M. M. Simunin
    • 1
  • I. V. Yaminskii
    • 2
  1. 1.Moscow State Institute of Electron TechnologyZelenogradRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations