, Volume 55, Issue 5, pp 800–806 | Cite as

Isoproterenol effects on the contractility of papillary muscles in the heart of ground squirrel

  • A. S. Averin
  • N. M. Zakharova
  • D. A. Ignat’ev
  • S. V. Tarlachkov
  • O. V. NakipovaEmail author
Complex Systems Biophysics


This paper presents a study of the influence of isoproterenol (1 μM) on the force of isometric contractions (0.1–1.0 Hz; 30 ± 1°C; 1.8 mM Ca2+) of papillary muscles of the right ventricle in the heart of a ground squirrel during summer activity (n = 5) and hibernation season (activity between hibernation bouts, n = 4; torpor, n = 4; and arousal, n = 5). It is shown that isoproterenol increases the force of contraction (a positive inotropic effect) by 20 ± 3% and 61 ± 7% at stimulation frequencies of 0.4 and 1.0 Hz, respectively. In animals of hibernating period the isoproterenol-induced increase in the force of contraction is rather brief (within 3 min after onset of the influence) and is accompanied by a 30–50% decrease in the force from the control level (a negative inotropic effect) at stimulation frequencies from 0.3 to 0.8 Hz. The positive isoproterenol inotropic effect in active summer ground squirrels is associated with a decrease in a relative value of the pause potentiating effect (a qualitative indicator of calcium content in sarcoplasmic reticulum), and the negative inotropic effect, with its increase. In all groups of animals under examination the isoproterenol inotropic effect (regardless of its direction) is accompanied by the acceleration of the temporal parameters of the contraction—relaxation cycle. The dependence of isoproterenol effects in the heart of hibernating animals on both seasonal changes in calcium homeostasis and the activity of the sympathetic nervous system is under discussion.


heart contractility β-adrenoreceptors isoproterenol hibernation ground squirrels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.-E. Brodde, H. Bruck, and K. Leineweber, J. Pharmacol. Sci. 100, 323 (2006)CrossRefGoogle Scholar
  2. 2.
    J. I. Goldhaber and M. A. Hamilton, Circulation 121, 1655 (2010).CrossRefGoogle Scholar
  3. 3.
    K. S. Ginsburg and D. M. Bers, J. Physiol. 556, 463 (2004).CrossRefGoogle Scholar
  4. 4.
    P. Ferrero, M. Said, G. Sanchez, et al., J. Mol. Cell. Cardiol. 43(3), 281 (2007).CrossRefGoogle Scholar
  5. 5.
    R. J. Hajjar, R. H. G. Schwinger, U. Schmidt, et al., Circulation 101, 1679 (2000).Google Scholar
  6. 6.
    S. E. Lehnart, L. S. Maier, and G. Hasenfuss, Heart Fail. Rev. 4, 213 (2009).CrossRefGoogle Scholar
  7. 7.
    M. J. Lohse, S. Engelhardt, and T. Eschenhagen, Circ Res. 93, 896 (2003).CrossRefGoogle Scholar
  8. 8.
    B. W. Johansson, Cardiovasc. Res. 31, 826 (1996).Google Scholar
  9. 9.
    N. Kondo and S. Shibata, Science 225, 641 (1984).CrossRefADSGoogle Scholar
  10. 10.
    N. Kondo, Circ. Res. 59, 221 (1986).Google Scholar
  11. 11.
    K. Pleschka, A. Heinrich, K. Witte, and B. Lemmer, Am. J. Physiol. Regul. Integr. Ñîm∂ 270, 304 (1996).Google Scholar
  12. 12.
    W. K. Milsom, M. B. Zimmer, and M. B. Harris, Exp. Physiol. 86(6), 791 (2001).CrossRefGoogle Scholar
  13. 13.
    R. Elvert and G. Heldmaier, J. Exp. Biol. 208, 1373 (2005).CrossRefGoogle Scholar
  14. 14.
    K. Li and J. L. Rouleau, J. Mol. Cell. Cardiol. 27, 1251 (1995).CrossRefGoogle Scholar
  15. 15.
    J. Koch-Weser and J. R. Blinks, Pharmacol. Rev. 15, 601 (1963).Google Scholar
  16. 16.
    D. M. Bers, Circ. Res. 87, 275 (2000).Google Scholar
  17. 17.
    B. Liu, B. Wohlfart, and B. W. Johansson, Cryobiology 27, 596 (1990).CrossRefGoogle Scholar
  18. 18.
    M. Endoh, Eur. J. Pharmacol. 500, 73 (2004).CrossRefGoogle Scholar
  19. 19.
    Z.-Q. Zhou, W. F. Dryden, and L. C. H. Wang, J. Therm. Biol. 12(2), 167 (1987).CrossRefGoogle Scholar
  20. 20.
    J. S. Charnock, W. F. Dryden, and R. J. Marshall, Br. J. Pharmacol. 78(1), 151 (1983).Google Scholar
  21. 21.
    B. Liu, L. C H. Wang, and D. D. Belke, Am. J. Physiol. 264, R104 (1993).Google Scholar
  22. 22.
    O. V. Nakipova, N. M. Zakharova, L. A. Andreeva, et al., Cryobiology 55, 173 (2007).CrossRefGoogle Scholar
  23. 23.
    A. Lukas and R. Bose, Arch. Pharmacol. 334, 480 (1986).CrossRefGoogle Scholar
  24. 24.
    Z. J. Penefsky, Comp. Biochem. Physiol. 109A(1), 1 (1994).CrossRefADSGoogle Scholar
  25. 25.
    A. E. Alekseev, N. I. Markevich, A. F. Korystova, et al., J. Biophys. 70, 786 (1996).CrossRefGoogle Scholar
  26. 26.
    Y. M. Kokoz, A. S. Grishenko, A. F. Korystova, et al., Bioscience Reports. 19(lb), (1999).Google Scholar
  27. 27.
    R. Z. Gainullin and M. E. Saxon, Cryo-Lett. 9, 392 (1988).Google Scholar
  28. 28.
    G. A. Ramirez-Correa and A. M. Murphy, Circ. Res. 101(4), 326 (2007).CrossRefGoogle Scholar
  29. 29.
    M. Hussain, G. A. Drago, J. Colyer, and C. H. Orchard, Am. J. Physiol. 273, 695 (1997).Google Scholar
  30. 30.
    B. J. Stephen and F. D. Romano, Cryobiology 21(6), 615 (1984).CrossRefGoogle Scholar
  31. 31.
    D. V. Vassallo, E. Q. Lima, P. Campagnaro, et al., Pharmacol Res. 29(3), 251 (1994).CrossRefGoogle Scholar
  32. 32.
    S. Q. Wang, E. G. Lakatta, H. Cheng, and Z. Q. Zhou, J. Exp. Biol. 205(Pt 19), 2957 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Averin
    • 1
  • N. M. Zakharova
    • 1
  • D. A. Ignat’ev
    • 1
  • S. V. Tarlachkov
    • 2
  • O. V. Nakipova
    • 1
    Email author
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations