Biophysics

, Volume 55, Issue 4, pp 610–614 | Cite as

Nitrites can be reduced in retinal vessels during hypoxia and protect the retina against ischemia and apoptosis

  • G. R. Kalamkarov
  • T. S. Konstantinova
  • A. E. Bugrova
  • T. F. Shevchenko
  • I. V. Tsapenko
  • M. V. Zueva
  • A. N. Ivanov
Complex Systems Biophysics
  • 36 Downloads

Abstract

The possibility and the mechanism of the reduction of nitrites in retinal vessels under acute hypoxia in vivo have been investigated. An experimental model of rat retinal ischemia was elaborated using laser coagulation of retinal vessels. It was demonstrated that vessel thrombosis does not occur if the nitrite concentration in the vessels is increased. It was proposed that, under acute hypoxia, nitrites are reduced to NO, which results in drastic vasodilatation. Considering that the effect takes less than a minute, this reduction cannot be due to hypoxic acidosis but is more likely associated with NO reduction by heme proteins. It was found that increased concentration of nitrites protects the retina from the development of ischemia progress and that preliminary administration of nitrites prevents apoptosis in the retina and a decrease in its photoelectric activity.

Keywords

nitric oxide nitrites ischemia apoptosis eye retina retinal pathologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Murad, N.Engl. J. Med. 355, 2003 (2006).CrossRefGoogle Scholar
  2. 2.
    J. O. Lundberg, E. Weitzberg, and M. T. Gladwin, Nat. Rev. Drug Discov. 7(2), 156 (2008).CrossRefGoogle Scholar
  3. 3.
    S. Shiva, et al., Circ. Res. 100, 654 (2007).CrossRefGoogle Scholar
  4. 4.
    B. L. Goldber, J. Biol. Chem. 275, 7757 (2000).CrossRefGoogle Scholar
  5. 5.
    G. R. Kalankarov, et al., Byul. Elsperim. Bio. Med. 145(6), 634 (2008).Google Scholar
  6. 6.
    F. Block and M. Schwarz, Gen. Pharmacol. 30(3), 281 (1998).Google Scholar
  7. 7.
    Y. Zhang, et al., Investigative ophthalmology & Visual Science 46(6), 2133 (2005).CrossRefGoogle Scholar
  8. 8.
    V. V. Neroev, et al., Vestn. Oftal’mol. no. 6, 11 (2004).Google Scholar
  9. 9.
    N. Benjamin, et al., Nature 368(6471), 502 (1994).CrossRefADSGoogle Scholar
  10. 10.
    C. Duncan, et al., Nat Med. 1(6) 546 (1995).CrossRefGoogle Scholar
  11. 11.
    A. Webb, et al., Proc. Natl. Acad. Sci. USA 101(37), 13683 (2004).CrossRefADSGoogle Scholar
  12. 12.
    A. F. Vanin, et al., Cell. Mol. Life Sci. 64, 96 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Webb J., et al., Circ Res. 103(9), 957 (2008).CrossRefGoogle Scholar
  14. 14.
    H. Shimizu, et al., Brain Res. 605, 33–42 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. R. Kalamkarov
    • 1
  • T. S. Konstantinova
    • 1
  • A. E. Bugrova
    • 1
  • T. F. Shevchenko
    • 1
  • I. V. Tsapenko
    • 2
  • M. V. Zueva
    • 2
  • A. N. Ivanov
    • 2
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Helmholtz Research Institute of Eye DiseasesMoscowRussia

Personalised recommendations