Biophysics

, Volume 54, Issue 5, pp 617–620 | Cite as

Glutamate induces formation of free radicals in rat brain synaptosomes

  • A. V. Alekseenko
  • V. A. Kolos
  • T. V. Waseem
  • S. V. Fedorovich
Cell Biophysics

Abstract

The influence of glutamate and agonists of its ionotropic receptors on free radical formation in rat brain synaptosomes was investigated using the fluorescent dye DCFDA. Glutamate at concentrations of 100 μM and 1 mM increased the production of reactive oxygen species. This phenomenon was eliminated by removing calcium from the incubation medium. Addition of NMDA (100 μM) or kainate (100 μM) to a suspension of synaptosomes also led to free radical formation. The influence of glutamate receptor agonists was blocked by the specific antagonists MK-801 and NBQX. Thus, activation of NMDA and AMPA/kainate receptors can lead to oxidative stress in neuronal presynaptic endings.

Key words

synaptosomes free radicals reactive oxygen species glutamate NMDA kainate 

Abbreviations

AMPA

a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

DCFDA

2′,7′-dichlorofluorescein diacetate

NMDA

N-methyl-D-aspartate

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Choi, Neuron 1, 623 (1988).CrossRefGoogle Scholar
  2. 2.
    P. Lipton, Physiol. Rev. 79, 1431 (1999).Google Scholar
  3. 3.
    J. P. Forder and M. Tymianski, Neurosci. 158, 293 (2009).CrossRefGoogle Scholar
  4. 4.
    R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, Pharmocol. Rev. 51, 7 (1999).Google Scholar
  5. 5.
    I. J. Reynolds and T. G. Hastings, J. Neurosci. 15, 3318 (1995).Google Scholar
  6. 6.
    M. Lafon-Cazal, S. Pietri, M. Culcasi, and J. Bockaert, Nature 364, 535 (1993).CrossRefADSGoogle Scholar
  7. 7.
    S. G. Carriedo, H. Z. Yin, S. L. Sensi, and J. H. Weiss, J. Neurosci. 18, 7727 (1998).Google Scholar
  8. 8.
    N. F. Avrova, I. V. Victorov, V. A. Tyurin, et al., Neurochem. Res. 23, 945 (1998).CrossRefGoogle Scholar
  9. 9.
    V. Perez-De La Cruz, M. Konigsberg, J. Pedraza-Chaverri, et al., Eur. J. Neurosci. 27, 1075 (2008).CrossRefGoogle Scholar
  10. 10.
    T. V. Waseem, A. A. Rakovich, T. V. Lavrukevich, et al., Neurochem. Int. 46, 235 (2005).CrossRefGoogle Scholar
  11. 11.
    T. V. Waseem, L. P. Lapatsina, and S. V. Fedorovich, Neurochem. Res. 33, 1316 (2008).CrossRefGoogle Scholar
  12. 12.
    A. V. Alekseenko, T. V. Waseem, and S. V. Fedorovich, Brain Res. 1241, 193 (2008).CrossRefGoogle Scholar
  13. 13.
    T. V. Waseem, V. A. Kolos, L. P. Lapatsina, and S. V. Fedorovich, Neurosci. Lett. 405, 106 (2006).CrossRefGoogle Scholar
  14. 14.
    M. Feligioni, A. Nishimune, and J. M. Henley, Eur. J. Neurosci. 29, 1348 (2009).CrossRefGoogle Scholar
  15. 15.
    A. I. M. Breukel, E. Besselsen, F. H. Lopes da Silva, and W. I. J. M. Ghijsen, Eur. J. Neurosci. 10, 106 (1998).CrossRefGoogle Scholar
  16. 16.
    N. F. Avrova, K. I. Shestak, I. O. Zakharova, et al., Neurosci. Behav. Physiol. 30, 535 (2000).CrossRefGoogle Scholar
  17. 17.
    C. P. LeBel and S. C. Bondy, Neurochem. Int. 17, 435 (1990).CrossRefGoogle Scholar
  18. 18.
    J. M. Andersen, O. Myhre, and F. Fonnum, Neurochem. Res. 28, 319 (2003).CrossRefGoogle Scholar
  19. 19.
    P. Hajos, Brain Res. 93, 485 (1975).CrossRefGoogle Scholar
  20. 20.
    O. Lowry, H. Rosebrough, H. Farr, and R. Randall, J. Biol. Chem. 193, 265 (1951).Google Scholar
  21. 21.
    Z. Hartley and J. M. Dubinsky, J. Neurosci. 13, 4690 (1993).Google Scholar
  22. 22.
    R. P. Irwin, S.-Z. Lin, R. T. Long, and S. M. Paul, J. Neurosci. 14, 1352 (1994).Google Scholar
  23. 23.
    E. H. Wong, J. A. Kemp, T. Priestley, et al., Proc. Natl. Acad. Sci. USA 83, 7104 (1986).CrossRefADSGoogle Scholar
  24. 24.
    J. C. Randle, T. Guet, A. Cordi, and J. M. Lepagnol, Eur. J. Pharmacol. 215, 237 (1992).CrossRefGoogle Scholar
  25. 25.
    E. J. Shin, Y. H. Koh, A. Y. Kim, et al., Behav. Brain Res. 197, 239 (2009).CrossRefGoogle Scholar
  26. 26.
    A. R. Giniatullin, F. Darios, A. Shakirzyanova, et al., Neurochem. 98, 1789 (2006).CrossRefGoogle Scholar
  27. 27.
    D. I. Keating, J. Neurochem. 104, 298 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Alekseenko
    • 1
  • V. A. Kolos
    • 1
  • T. V. Waseem
    • 1
  • S. V. Fedorovich
    • 1
  1. 1.Institute of Biophysics and Cell EngineeringNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations