Biophysics

, Volume 54, Issue 4, pp 497–512 | Cite as

Three-dimensional ultrastructural and immunohistochemical study of immature neurons in the subgranular zone of the rat dentate gyrus

  • V. I. Popov
  • I. V. Kraev
  • D. Banks
  • H. A. Davies
  • E. D. Morenkov
  • M. G. Stewart
  • E. E. Fesenko
Cell Biophysics

Abstract

The present study is devoted to three-dimensional ultrastructural organization of mitotically dividing immature neurons in dentate gyrus using biophysical approaches. In adult vertebrate brain, cell proliferation persists throughout life mainly in dentate gyrus of the hippocampus (DG) and olfactory bulb. Neurogenesis has been demonstrated using tagged thymidine analogues incorporated into the S phase of the cell cycle, but these may also detect repaired DNA in postmitotic neurons. Recent retroviral labelling has shown that neuronal progenitors/neuroblasts divide and produce functional neurons. Providing ultrastructural evidence of mitotically active cells has proven problematical, not only because of technical issues of identifying dividing cells at electron microscope level, but also because it is difficult to demonstrate unequivocally that neurons identified in the electron microscope are really post mitotic. However by characterising post mitotic cells labelled with BrdU and doublecortin and comparing these with post mitotic cells reconstructed in 3-dimensions from ultrathin serial sections, we have been able to illustrate individual mitotic elements and phases of cells within the GC layer of adult rat dentate gyrus. Here we show dividing cells in metaphase within clusters of immature GCs in subgranular zone (SGZ). These reconstructions provide ultrastructural confirmation that cells expressing doublecortin (DCX), a microtubule-associated protein expressed in migrating neurons, localize as clusters in the subgranular zone (SGZ) of dentate gyrus (DG) in the hippocampus during all animal life. Such DG cells with clear synaptic specializations, somatic spines and basal dendrites are exclusive to immature GC that appear to re-enter the cell cycle, suggesting the possibility that newly generated neurons within the DG might arise not only from precursors, but also from clusters of immature GC.

Key words

BrdU cell proliferation doublecortin granule cells hippocampus metaphase serial ultrathin sectioning somatic spines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, et al., Nat. Med. 4(11), 1313 (1998).CrossRefGoogle Scholar
  2. 2.
    F. H. Gage, Science 287(5457), 1433 (2000).CrossRefADSGoogle Scholar
  3. 3.
    D. N. Abrous, M. Koehl, and M. Le Moal, Phys. Rev. 85(2), 523 (2005).CrossRefGoogle Scholar
  4. 4.
    E. Gould, A. J. Reeves, M. S. Graziano, et al., Science 286(5439), 548 (1999).CrossRefGoogle Scholar
  5. 5.
    D. Dupret, A. Fabre, M. D. Dobrossy, et al., PLoS Biol. 5(8), 1683 (2007).CrossRefGoogle Scholar
  6. 6.
    C. Zhao, E. M. Teng, R. G. Summers, Jr., et al., J. Neurosci. 26(1), 3 (2006).CrossRefGoogle Scholar
  7. 7.
    X. Duan, J. H. Chang, S. Ge, et al., Cell 130(6), 1146 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Van Praag, A. J. Schinder, B. R. Christie, et al., Nature 415(6875), 1030 (2002).CrossRefADSGoogle Scholar
  9. 9.
    M. S. Esposito, V. C. Piatti, D. A. Laplagne, et al., J. Neurosci. 25(44), 10074 (2005).CrossRefGoogle Scholar
  10. 10.
    T. J. Shors, G. Miesegaes, A. Beylin, et al., Nature 410(6826), 372 (2001).CrossRefADSGoogle Scholar
  11. 11.
    A. Olariu, K. M. Cleaver, L. E. Shore, et al., Hippocampus 15(6), 750 (2005).CrossRefGoogle Scholar
  12. 12.
    I. Imayoshi, M. Sakamoto, T. Ohtsuka, et al., Nat. Neurosci. 11(11), 1153 (2008).CrossRefGoogle Scholar
  13. 13.
    E. Gould, Nat. Rev. Neurosci. 8(6), 481 (2007).CrossRefGoogle Scholar
  14. 14.
    M. S. Kaplan and D. H. Bell, J. Neurosci. 4(6), 1429 (1984).Google Scholar
  15. 15.
    G. Kempermann, H. G. Kuhn, and F. H. Gage, Nature 386(6624), 493 (1997).CrossRefADSGoogle Scholar
  16. 16.
    V. Lemaire, M. Koehl, M. Le Moal, et al., Proc. Natl. Acad. Sci. USA 97(20), 11032 (2000).CrossRefADSGoogle Scholar
  17. 17.
    B. Steiner, G. Kronenberg, S. Jessberger, et al., Glia 46(1), 41 (2004).CrossRefGoogle Scholar
  18. 18.
    C. M. Cooper-Kuhn and H. G. Kuhn, Brain Res. Dev. Brain Res. 134(1–2), 13 (2002).CrossRefGoogle Scholar
  19. 19.
    P. Rakic, J. Neurosci. 22(3), 614 (2002).Google Scholar
  20. 20.
    C. Lois and A. Alvarez-Buylla, Science 264(5162), 1145 (1994).CrossRefADSGoogle Scholar
  21. 21.
    C. Lois, J. M. Garcia-Verdugo, and A. Alvarez-Buylla, Science 271(5251), 978 (1996).CrossRefADSGoogle Scholar
  22. 22.
    T. D. Palmer, J. Takahashi, and F. H. Gage, Mol. Cell Neurosci. 8(6), 389 (1997).CrossRefGoogle Scholar
  23. 23.
    B. A. Reynolds and S. Weiss, Science 255(5052), 1707 (1992).CrossRefADSGoogle Scholar
  24. 24.
    P. Taupin and F. H. Gage, J. Neurosci. Res. 69(6), 745 (2002).CrossRefGoogle Scholar
  25. 25.
    F. Doetsch, J. M. Garcia-Verdugo, and A. Alvarez-Buylla, J. Neurosci. 17(13), 5046 (1997).Google Scholar
  26. 26.
    L. Seress and C. E. Ribak, Brain Res. 569(2), 353 (1992).CrossRefGoogle Scholar
  27. 27.
    J. Wenzel, S. Otani, N. L. Desmond, et al., Brain Res. 656(1), 127 (1994).CrossRefGoogle Scholar
  28. 28.
    F. Francis, A. Koulakoff, D. Boucher, et al., J. Neuron 23(2), 247 (1999).CrossRefGoogle Scholar
  29. 29.
    J. G. Gleeson, P. T. Lin, L. A. Flanagan, et al., Neuron 23(2), 257 (1999).CrossRefGoogle Scholar
  30. 30.
    G. Kempermann, D. Gast, G. Kronenberg, et al., Development 130(2), 391 (2003).CrossRefGoogle Scholar
  31. 31.
    S. Yechikhov, E. Morenkov, T. Chulanova, et al., Epilepsy Res. 46(1), 15 (2001).CrossRefGoogle Scholar
  32. 32.
    V. I. Popov, H. A. Davies, V. V. Rogachevsky, et al., Neuroscience 128(2), 251 (2004).CrossRefGoogle Scholar
  33. 33.
    M. G. Stewart, H. A. Davies, C. Sandi, et al., Neuroscience 131(1), 43 (2005).CrossRefGoogle Scholar
  34. 34.
    J. C. Fiala and K. M. Harris, J. Am. Med. Inform. Assoc. 8(1), 103 (2001).Google Scholar
  35. 35.
    C. E. Ribak, M. J. Korn, Z. Shan, et al., Brain Res. 1000(1–2), 195 (2004).CrossRefGoogle Scholar
  36. 36.
    J. Nacher, C. Crespo, and B. S. McEwen, Eur. J. Neurosci. 14(4), 629 (2001).CrossRefGoogle Scholar
  37. 37.
    B. Seri, J. M. Garcia-Verdugo, L. Collado-Morente, et al., J. Comp. Neurol. 478(4), 359 (2004).CrossRefGoogle Scholar
  38. 38.
    L. A. Shapiro and C. E. Ribak, Epilepsy Res. 69(1), 53 (2006).CrossRefGoogle Scholar
  39. 39.
    X. X. Yan, I. Spigelman, P. H. Tran, et al., Anat. Embryol. 203(3), 203 (2001).CrossRefGoogle Scholar
  40. 40.
    C. E. Ribak and L. A. Shapiro, Brain Res. Rev. 55(2), 390 (2007).CrossRefGoogle Scholar
  41. 41.
    V. I. Popov, N. I. Medvedev, I. V. Kraev, et al., Eur. J. Neurosci. 27(2), 301 (2008).CrossRefGoogle Scholar
  42. 42.
    J. R. Cooney, J. L. Hurlburt, D. K. Selig, et al., J. Neurosci. 22(6), 2215 (2002).Google Scholar
  43. 43.
    L. Seress, M. Frotscher, and C. E. Ribak, Exp. Brain Res. 78(1), 1 (1989).CrossRefGoogle Scholar
  44. 44.
    M. C. Bundman and C. M. Gall, Hippocampus 4(5), 611 (1994).CrossRefGoogle Scholar
  45. 45.
    G. Kempermann, S. Jessberger, B. Steiner, et al., Trends Neurosci. 27(8), 447 (2004).CrossRefGoogle Scholar
  46. 46.
    J. C. Fiala, M. Feinberg, V. Popov, et al., J. Neurosci. 18(21), 8900 (1998).Google Scholar
  47. 47.
    I. V. Kraev, O. V. Godukhin, I. V. Patrushev, et al., Neuroscience 162(2), 254 (2009).CrossRefGoogle Scholar
  48. 48.
    N. T. Carnevale, K. Y. Tsai, B. J. Claiborne, et al., J. Neurophysiol. 78(2), 703 (1997).Google Scholar
  49. 49.
    M. Lauer, H. Beckmann, and D. Senitz, Psychiatry Res. 122(2), 89 (2003).CrossRefGoogle Scholar
  50. 50.
    K. Dashtipour, P. H. Tran, M. M. Okazaki, et al., Brain Res. 890(2), 261 (2001).CrossRefGoogle Scholar
  51. 51.
    M. S. Kaplan and J. W. Hinds, Science 197(4308), 1092 (1977).CrossRefADSGoogle Scholar
  52. 52.
    J. DeFelipe, Nat. Rev. Neurosci. 7(10), 811 (2006).CrossRefGoogle Scholar
  53. 53.
    M. Segal, Nat. Rev. Neurosci. 6(4), 277 (2005).CrossRefGoogle Scholar
  54. 54.
    V. I. Popov and M. G. Stewart, Synapse 63(5), 369 (2009).CrossRefGoogle Scholar
  55. 55.
    K. Deisseroth, S. Singla, H. Toda, et al., 42(4), 535 (2004).Google Scholar
  56. 56.
    G. Riedel, J. Micheau, A. G. Lam, et al., Nat. Neurosci. 2(10), 898 (1999).CrossRefGoogle Scholar
  57. 57.
    W. T. Greenough, N. J. Cohen, and J. M. Juraska, Nature Neurosci. 2(3), 203 (1999).CrossRefGoogle Scholar
  58. 58.
    A. Bedard, M. Levesque, P. J. Bernier, et al., J. Neurosci. 16(10), 1917 (2002).Google Scholar
  59. 59.
    J. C. Edmondson and M. E. Hatten, J. Neurosci. 7(6), 1928 (1987).Google Scholar
  60. 60.
    R. J. Rivas and M. E. Hatten, J. Neurosci. 15(2), 981 (1995).Google Scholar
  61. 61.
    N. A. O’Rourke, D. P. Sullivan, C. E. Kaznowski, et al., Development 121(7), 2165 (1995).Google Scholar
  62. 62.
    V. I. Popov, L. S. Bocharova, and A. G. Bragin, Neuroscience 48(1), 45 (1992).CrossRefGoogle Scholar
  63. 63.
    V. I. Popov, N. I. Medvedev, I. V. Patrushev, et al., Neuroscience 149(3), 549 (2007).CrossRefGoogle Scholar
  64. 64.
    C. D. Conrad, Behav. Cogn. Neurosci. Rev. 5(1), 41 (2006).CrossRefGoogle Scholar
  65. 65.
    B. S. McEwen, Annu. Rev. Neurosci. 22, 105 (1999).CrossRefGoogle Scholar
  66. 66.
    H. A. Cameron and R. D. McKay, J. Comp. Neurol. 435(4), 406 (2001).CrossRefGoogle Scholar
  67. 67.
    A. G. Monti-Graziadei, Brain Res. Dev. Brain Res. 70(1), 65 (1992).CrossRefGoogle Scholar
  68. 68.
    J. Bischofberger, Nature Neurosci. 10(3), 273 (2007).CrossRefGoogle Scholar
  69. 69.
    C. Dalla, D. A. Bangasser, C. Edgecomb, et al., Neurobiol. Learn. Mem. 88(1), 143 (2007).CrossRefGoogle Scholar
  70. 70.
    J. Waddell and T. J. Shors, Eur. J. Neurosci. 27(11), 3020 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. I. Popov
    • 1
    • 2
    • 3
  • I. V. Kraev
    • 1
    • 2
    • 3
  • D. Banks
    • 3
  • H. A. Davies
    • 3
  • E. D. Morenkov
    • 4
  • M. G. Stewart
    • 3
  • E. E. Fesenko
    • 1
    • 2
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.Pushchino State UniversityPushchinoRussia
  3. 3.Department of Life SciencesThe Open UniversityMilton KeynesUK
  4. 4.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations