Advertisement

Biophysics

, Volume 54, Issue 2, pp 204–207 | Cite as

Memory blocking: Facts, problems, and models

  • E. V. Budilova
  • M. P. Karpenko
  • L. M. Kachalova
  • A. T. Terekhin
Complex Systems Biophysics

Abstract

The tip-of-the-tongue state, or memory blocking, is considered with regard to the feasibility of its neural network modeling. The results of psycholinguistic and neurobiological studies on memory blocking are reviewed, and basic problems that need be solved to comprehend this phenomenon are formulated. One such point is the dramatic discrepancy between the subjective assurance that an image is familiar and the inability to recollect it fully. To explain this discrepancy, we propose a biologically plausible neural network model of recognition, demonstrating cardinal superiority in the capacity of image recognition over its recollection.

Key words

tip-of-the-tongue state Hopfield network energy function familiarity recognition recollection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Chekhov, A Horsy Surname (Peterburgskaya Gazeta, St. Petersburg, 1885) [in Russian].Google Scholar
  2. 2.
    W. James, The Principles of Psychology (Holt, New York, 1890).Google Scholar
  3. 3.
    B. L. Schwartz, Tip-of-the-Tongue States: Phenomenology, Mechanism, and Lexical Retrieval (Lawrence Erlbaum Association, New Jersey, 2001).Google Scholar
  4. 4.
    D. L. Schacter, The Seven Sins of Memory — How the Mind Forgets and Remembers (Houghton Mifflin Co, Boston, 2001).Google Scholar
  5. 5.
    D. M. Burke, D. G. MacKay, J. S. Worthley, and E. Wade, J. Memory Language 30, 542 (1991).CrossRefGoogle Scholar
  6. 6.
    M. K. Heine, B. A. Ober, and G. K. Shenaut, Psychol. Aging 14, 445.Google Scholar
  7. 7.
    M. Evrard, Brain Language 81, 174 (1999).CrossRefGoogle Scholar
  8. 8.
    D. M. Burke and M. A. Shafto, Curr. Direct. Psychol. Sci. 13, 21 (2004).CrossRefGoogle Scholar
  9. 9.
    G. Pelamatti, M. Pascotto, and C. Semenza, Cortex 39, 97 (2003).CrossRefGoogle Scholar
  10. 10.
    A. W. Ellis, A. W. Young, and E. M. R. Critchley, Brain 112, 1469 (1989).CrossRefGoogle Scholar
  11. 11.
    L. Cipolotti, J. E. McNeil, and E. K. Warrington, Memory 1, 2891 (1993).CrossRefGoogle Scholar
  12. 12.
    C. Semenza and M. T. Sgaramella, Memory 1, 265 (1993).CrossRefGoogle Scholar
  13. 13.
    P. McKenna and E. Warrington, J. Neurol. Neurosurg. Psychiatry 43, 781 (1980).CrossRefGoogle Scholar
  14. 14.
    C. Semenza and M. Zettin, Nature 342, 678 (1989).CrossRefADSGoogle Scholar
  15. 15.
    F. Lucchelli and E. De Renzi, Cortex 28, 221 (1992).Google Scholar
  16. 16.
    E. K. Warrington and F. Clegg, Memory 1, 281 (1993).CrossRefGoogle Scholar
  17. 17.
    M. Hittmair-Delazer, G. Denes, C. Semenza, and M. C. Mantovan, Neuropsychologia 32, 465 (1994).CrossRefGoogle Scholar
  18. 18.
    E. K. Warrington, Brit. J. Psychol. 72, 175 (1981).Google Scholar
  19. 19.
    L. K. Tyler, H. E. Moss, and F. Jennings, Neuropsychology 9, 354 (1995).CrossRefGoogle Scholar
  20. 20.
    E. K. Warrington and T. Shallice, Brain 107, 829 (1984).CrossRefGoogle Scholar
  21. 21.
    C. Sacchett and G. W. Humphreys, Cogn. Neuropsychol. 9, 73 (1992).CrossRefGoogle Scholar
  22. 22.
    E. DeRenzi and F. Lucchelli, Cortex 30, 3 (1994).Google Scholar
  23. 23.
    M. Dennis, Brain Language 3, 147 (1976).CrossRefGoogle Scholar
  24. 24.
    K. Suzuki, A. Yamadori, and T. Fujii, Neurocase 3, 193 (1997).CrossRefGoogle Scholar
  25. 25.
    J. Hart, R. S. Berndt, and A. C. Caramazza, Nature 316v, 439 (1985).CrossRefADSGoogle Scholar
  26. 26.
    A. C. Caramazza and J. R. Shelton, J. Cogn. Neurosci. 10, 1 (1998).CrossRefGoogle Scholar
  27. 27.
    R. Fukatsu, T. Fujii, T. Tsukiura, et al., Neurology 52, 1096 (1999).Google Scholar
  28. 28.
    D. M. Harris and J. Kay, Cortex 31, 575 (1995).Google Scholar
  29. 29.
    P. Verstichel, L. Cohen, and G. Crochet, Neurocase 2, 221 (1996).CrossRefGoogle Scholar
  30. 30.
    M. Reinkemeier, H. J. Markowitsch, M. Rauch, and J. Kessler, Neuropsychologia 35, 677 (1997).CrossRefGoogle Scholar
  31. 31.
    T. Tsukiura, T. Fujii, R. Fukatsu, et al., Cogn. Neurosci. 14, 922 (2002).CrossRefGoogle Scholar
  32. 32.
    M. Spitzer, K. K. Kwong, W. Kennedy, and B. R. Rosen, Neuroreport 6, 2109 (1995).CrossRefGoogle Scholar
  33. 33.
    A. Martin, C. L. Wiggs, L. G. Ungerleider, and J. V. Haxby, Nature 379, 649 (1996).CrossRefADSGoogle Scholar
  34. 34.
    E. Warburton, R. J. S. Wise, C. J. Price, et al., Brain 119, 159 (1996).CrossRefGoogle Scholar
  35. 35.
    H. Damasio, T. J. Grabowski, D. Tranel, et al., Nature 380, 499 (1998).CrossRefADSGoogle Scholar
  36. 36.
    H. J. Neville and D. Bavelier, Curr. Opin. Neurobiol. 8, 254 (1998).CrossRefGoogle Scholar
  37. 37.
    L. Standing, Quarterly J. Exp. Psychol. 25, 207 (1973).CrossRefGoogle Scholar
  38. 38.
    J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    D. J. Amit, Modeling Brain Functions (Cambridge Univ. Press, Cambridge, 1989).Google Scholar
  40. 40.
    W. S. McCulloch and W. Pitts, Bull. Math. Biophys. 5, 115 (1943).zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    D. O. Hebb, The Organization of Behavior (Wiley, New York, 1949).Google Scholar
  42. 42.
    R. Bogacz, M. W. Brown, and C. Giraud-Carrier, J. Comput. Neurosci. 10, 5 (2001).CrossRefGoogle Scholar
  43. 43.
    E. V. Budilova, M. P. Karpenko, L. M. Kachalova, and A. T. Terekhin, Biofizika 54, 500 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. V. Budilova
    • 1
    • 2
  • M. P. Karpenko
    • 1
  • L. M. Kachalova
    • 1
  • A. T. Terekhin
    • 1
    • 2
  1. 1.Institute of Cognitive NeurologyModern University for HumanitiesMoscowRussia
  2. 2.Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations