Skip to main content
Log in

The influence of geomagnetic field compensation on human cognitive processes

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The influence of compensation of the geomagnetic field to levels below 0.4 μT (referred to below as “zero magnetic field”) on human cognitive processes has been studied. 40 participants in the study were assigned to four groups according to their gender and age. The study focused on the assessment of cognitive processes. Each participant took part in two experiments, one of which was set up under normal (control) conditions, whereas the second one was set up under the conditions of a zero magnetic field. 45 min of exposure to zero magnetic field caused statistically significant changes in five out of eight parameters in the cognitive tests. The magnitude of the effects varied between 1.3 and 6.2%, with an average value of 2.1% for all tests ( p < 0.002, MANOVA). It was found that exposure to a zero magnetic field resulted in an increased number of errors and extension of the time required to complete the tasks compared to normal conditions. Men outperformed women under zero magnetic field conditions and young people performed better than older people. It was found that factors other than age and gender affected the cognitive performance under zero magnetic field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MF:

magnetic field

ZMF:

zero magnetic field

EF:

electrostatic field

ANOVA:

analysis of variance

MANOVA:

multivariate analysis of variance

References

  1. C. M. Cook, A. W. Thomas, and F. S. Prato, Bioelectromagnetics 23(2), 144 (2002).

    Article  Google Scholar 

  2. C. M. Cook, D. M. Saucier, A. W. Thomas, and F. S. Prato, Bioelectromagnetics 27(8), 613 (2006).

    Article  Google Scholar 

  3. A. W. Preece, K. A. Wesnes, and G. R. Iwi, Int. J. Radiat. Biol. 74(4), 463 (1998).

    Article  Google Scholar 

  4. J. Podd, J. Abbott, N. Kazantzis, and A. Rowland, Bioelectromagnetics 23(3), 189 (2002).

    Article  Google Scholar 

  5. C. J. Whittington, J. V. Podd, and B. R. Rapley, Bioelectromagnetics 17(2), 131 (1996).

    Article  Google Scholar 

  6. N. M. Shupak, F. S. Prato, and A. W. Thomas, Neurosci. Lett. 363(2), 157 (2004).

    Article  Google Scholar 

  7. S. Ghione, C. D. Seppia, L. Mezzasalma, and L. Bonfiglio, Neurosci. Lett. 382(1–2), 112 (2005).

    Article  Google Scholar 

  8. C. M. Cook, A. W. Thomas, L. Keenliside, and F. S. Prato, Bioelectromagnetics 26(5), 367 (2005).

    Article  Google Scholar 

  9. D. W. Chakeres and F. de Vocht, Prog. Biophys. Mol. Biol. 87(2–3), 255 (2005).

    Article  Google Scholar 

  10. L. Ghibelli, C. Cerella, S. Cordisco, et al., Apoptosis 11(3), 359 (2006).

    Article  Google Scholar 

  11. P. Volpe, Photochem. Photobiol. Sci. 2(6), 637 (2003).

    Article  Google Scholar 

  12. G. Cremer-Bartels, K. Krause, and H. J. Kuchle, Graefes Arch. Clin. Exp. Ophthalmol. 220(5), 248 (1983).

    Article  Google Scholar 

  13. F. Thoss and B. Bartsch, J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 189(10), 777 (2003).

    Article  Google Scholar 

  14. F. Thoss and B. Bartsch, Vision Res. 47(8), 1036 (2007).

    Article  Google Scholar 

  15. V. N. Binhi, V. A. Milyaev, R. M. Sarimov, and A. A. Zarutskii, Biomed. Tech. Radioel. 8–9, 49 (2006).

    Google Scholar 

  16. V. N. Binhi, Magnetobiology. Underlying Physical Problems (Acad. Press, London, 2002).

    Google Scholar 

  17. E. Choleris, C. Del Seppia, A. W. Thomas, et al., Proc. Biol. Sci. 269(1487), 193 (2002).

    Article  Google Scholar 

  18. V. N. Binhi, A. A. Zarutskii, S. V. Kapranov, et al., Rad. Biol. Radioelologia 45(4), 451 (2005).

    Google Scholar 

  19. M. Berk, S. Dodd, and M. Henry, Bioelectromagnetics 27(2), 151 (2006).

    Article  Google Scholar 

  20. C. Graham, A. Sastre, M. R. Cook, and M. M. Gerkovich, Clin. Neurophysiol. 111(1), 1936 (2000).

    Article  Google Scholar 

  21. E. Lyskov, N. Kalezic, M. Markov, et al., Bioelectromagnetics 26(4), 299 (2005).

    Article  Google Scholar 

  22. J. Dobson, Exp. Brain. Res. 144(1), 122 (2002).

    Article  Google Scholar 

  23. L. Hillert, N. Berglind, B. B. Arnetz, and T. Bellander, Scand. J. Work Environ. Health 28(1), 33 (2002).

    Google Scholar 

  24. N. Schreier, A. Huss, and M. Roosli, Soz Praventivmed. 51(4), 202 (2006).

    Article  Google Scholar 

  25. J. R. Stroop, J. Exp. Psychol. 18, 643 (1935).

    Article  Google Scholar 

  26. S. W. Kuffler, J. Neuropsysiol. 16(1), 37 (1953).

    Google Scholar 

  27. R. N. Shepard, and L. A. Cooper, Mental Images and Their Transformations (MIT Press, Cambridge, 1982).

    Google Scholar 

  28. S. Pinker, Language as an Instinct (URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  29. W. Wiltschko, U. Munro, R. Wiltschko, and J. L. Kirschvink, J. Exp. Biol. 205(Pt 19), 3031 (2002).

    Google Scholar 

  30. S. Johnsen and K. J. Lohmann, Nat. Rev. Neurosci. 6(9), 703 (2005).

    Article  Google Scholar 

  31. V. N. Binhi and D. S. Chernavskii, Europhysics Lett. 70(6), 850 (2005).

    Article  ADS  Google Scholar 

  32. P. P. Schultheiss-Grassi and J. Dobson, Biometals 12(1), 67 (1999).

    Article  Google Scholar 

  33. A. L. Bunachenko, R. Z, Sagdeev, and K. M. Salikhov, Magnetic and Spin Effects in Chemical Reactions (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  34. T. Ritz, S. Adem, and K. Schulten, Biophysical J. 78(2), 707 (2000).

    Article  Google Scholar 

  35. W. Wiltschko and R. Wiltschko, J. Comp. Physiol. A: Sensory, Neural, and Behavioral Physiology 191(8), 675 (2005).

    Article  Google Scholar 

  36. V. H. Binhi and A. B. Rubin, Electromagn. Biol. Med. 26(1), 45 (2007).

    Article  Google Scholar 

  37. V. N. Binhi, Int. J. Radiat. Biol. 84(7), 569 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Sarimov.

Additional information

Original Russian Text © R.M. Sarimov, V.N. Binhi, V.A. Milyaev, 2008, published in Biofizika, 2008, Vol. 53, No. 5, pp. 856–866.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarimov, R.M., Binhi, V.N. & Milyaev, V.A. The influence of geomagnetic field compensation on human cognitive processes. BIOPHYSICS 53, 433–441 (2008). https://doi.org/10.1134/S0006350908050205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908050205

Key words

Navigation