, Volume 53, Issue 5, pp 433–441 | Cite as

The influence of geomagnetic field compensation on human cognitive processes

  • R. M. SarimovEmail author
  • V. N. Binhi
  • V. A. Milyaev
Complex Systems Biophysics


The influence of compensation of the geomagnetic field to levels below 0.4 μT (referred to below as “zero magnetic field”) on human cognitive processes has been studied. 40 participants in the study were assigned to four groups according to their gender and age. The study focused on the assessment of cognitive processes. Each participant took part in two experiments, one of which was set up under normal (control) conditions, whereas the second one was set up under the conditions of a zero magnetic field. 45 min of exposure to zero magnetic field caused statistically significant changes in five out of eight parameters in the cognitive tests. The magnitude of the effects varied between 1.3 and 6.2%, with an average value of 2.1% for all tests ( p < 0.002, MANOVA). It was found that exposure to a zero magnetic field resulted in an increased number of errors and extension of the time required to complete the tasks compared to normal conditions. Men outperformed women under zero magnetic field conditions and young people performed better than older people. It was found that factors other than age and gender affected the cognitive performance under zero magnetic field conditions.

Key words

biological effects of magnetic and electrostatic fields biogenic magnetite magnetoreception color perception 



magnetic field


zero magnetic field


electrostatic field


analysis of variance


multivariate analysis of variance


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Cook, A. W. Thomas, and F. S. Prato, Bioelectromagnetics 23(2), 144 (2002).CrossRefGoogle Scholar
  2. 2.
    C. M. Cook, D. M. Saucier, A. W. Thomas, and F. S. Prato, Bioelectromagnetics 27(8), 613 (2006).CrossRefGoogle Scholar
  3. 3.
    A. W. Preece, K. A. Wesnes, and G. R. Iwi, Int. J. Radiat. Biol. 74(4), 463 (1998).CrossRefGoogle Scholar
  4. 4.
    J. Podd, J. Abbott, N. Kazantzis, and A. Rowland, Bioelectromagnetics 23(3), 189 (2002).CrossRefGoogle Scholar
  5. 5.
    C. J. Whittington, J. V. Podd, and B. R. Rapley, Bioelectromagnetics 17(2), 131 (1996).CrossRefGoogle Scholar
  6. 6.
    N. M. Shupak, F. S. Prato, and A. W. Thomas, Neurosci. Lett. 363(2), 157 (2004).CrossRefGoogle Scholar
  7. 7.
    S. Ghione, C. D. Seppia, L. Mezzasalma, and L. Bonfiglio, Neurosci. Lett. 382(1–2), 112 (2005).CrossRefGoogle Scholar
  8. 8.
    C. M. Cook, A. W. Thomas, L. Keenliside, and F. S. Prato, Bioelectromagnetics 26(5), 367 (2005).CrossRefGoogle Scholar
  9. 9.
    D. W. Chakeres and F. de Vocht, Prog. Biophys. Mol. Biol. 87(2–3), 255 (2005).CrossRefGoogle Scholar
  10. 10.
    L. Ghibelli, C. Cerella, S. Cordisco, et al., Apoptosis 11(3), 359 (2006).CrossRefGoogle Scholar
  11. 11.
    P. Volpe, Photochem. Photobiol. Sci. 2(6), 637 (2003).CrossRefGoogle Scholar
  12. 12.
    G. Cremer-Bartels, K. Krause, and H. J. Kuchle, Graefes Arch. Clin. Exp. Ophthalmol. 220(5), 248 (1983).CrossRefGoogle Scholar
  13. 13.
    F. Thoss and B. Bartsch, J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 189(10), 777 (2003).CrossRefGoogle Scholar
  14. 14.
    F. Thoss and B. Bartsch, Vision Res. 47(8), 1036 (2007).CrossRefGoogle Scholar
  15. 15.
    V. N. Binhi, V. A. Milyaev, R. M. Sarimov, and A. A. Zarutskii, Biomed. Tech. Radioel. 8–9, 49 (2006).Google Scholar
  16. 16.
    V. N. Binhi, Magnetobiology. Underlying Physical Problems (Acad. Press, London, 2002).Google Scholar
  17. 17.
    E. Choleris, C. Del Seppia, A. W. Thomas, et al., Proc. Biol. Sci. 269(1487), 193 (2002).CrossRefGoogle Scholar
  18. 18.
    V. N. Binhi, A. A. Zarutskii, S. V. Kapranov, et al., Rad. Biol. Radioelologia 45(4), 451 (2005).Google Scholar
  19. 19.
    M. Berk, S. Dodd, and M. Henry, Bioelectromagnetics 27(2), 151 (2006).CrossRefGoogle Scholar
  20. 20.
    C. Graham, A. Sastre, M. R. Cook, and M. M. Gerkovich, Clin. Neurophysiol. 111(1), 1936 (2000).CrossRefGoogle Scholar
  21. 21.
    E. Lyskov, N. Kalezic, M. Markov, et al., Bioelectromagnetics 26(4), 299 (2005).CrossRefGoogle Scholar
  22. 22.
    J. Dobson, Exp. Brain. Res. 144(1), 122 (2002).CrossRefGoogle Scholar
  23. 23.
    L. Hillert, N. Berglind, B. B. Arnetz, and T. Bellander, Scand. J. Work Environ. Health 28(1), 33 (2002).Google Scholar
  24. 24.
    N. Schreier, A. Huss, and M. Roosli, Soz Praventivmed. 51(4), 202 (2006).CrossRefGoogle Scholar
  25. 25.
    J. R. Stroop, J. Exp. Psychol. 18, 643 (1935).CrossRefGoogle Scholar
  26. 26.
    S. W. Kuffler, J. Neuropsysiol. 16(1), 37 (1953).Google Scholar
  27. 27.
    R. N. Shepard, and L. A. Cooper, Mental Images and Their Transformations (MIT Press, Cambridge, 1982).Google Scholar
  28. 28.
    S. Pinker, Language as an Instinct (URSS, Moscow, 2004) [in Russian].Google Scholar
  29. 29.
    W. Wiltschko, U. Munro, R. Wiltschko, and J. L. Kirschvink, J. Exp. Biol. 205(Pt 19), 3031 (2002).Google Scholar
  30. 30.
    S. Johnsen and K. J. Lohmann, Nat. Rev. Neurosci. 6(9), 703 (2005).CrossRefGoogle Scholar
  31. 31.
    V. N. Binhi and D. S. Chernavskii, Europhysics Lett. 70(6), 850 (2005).CrossRefADSGoogle Scholar
  32. 32.
    P. P. Schultheiss-Grassi and J. Dobson, Biometals 12(1), 67 (1999).CrossRefGoogle Scholar
  33. 33.
    A. L. Bunachenko, R. Z, Sagdeev, and K. M. Salikhov, Magnetic and Spin Effects in Chemical Reactions (Nauka, Novosibirsk, 1978) [in Russian].Google Scholar
  34. 34.
    T. Ritz, S. Adem, and K. Schulten, Biophysical J. 78(2), 707 (2000).CrossRefGoogle Scholar
  35. 35.
    W. Wiltschko and R. Wiltschko, J. Comp. Physiol. A: Sensory, Neural, and Behavioral Physiology 191(8), 675 (2005).CrossRefGoogle Scholar
  36. 36.
    V. H. Binhi and A. B. Rubin, Electromagn. Biol. Med. 26(1), 45 (2007).CrossRefGoogle Scholar
  37. 37.
    V. N. Binhi, Int. J. Radiat. Biol. 84(7), 569 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations