Advertisement

Biophysics

, Volume 52, Issue 3, pp 268–276 | Cite as

Luminescence analysis of the structure of human alpha-1-microglobulin

  • V. M. MazhulEmail author
  • S. Zh. Kananovich
  • T. S. Serchenya
  • O. V. Sviridov
Molecular Biophysics

Abstract

Absorption, fluorescence, and fluorescence excitation spectra in UV and visible regions are studied for alpha-1-microglobulin preparations isolated from human urine by gel chromatography and immunoaffinity chromatography with charcoal adsorption. The possible nature of low-molecular-weight compounds that impart yellow-brown color to alpha-1-microglobulin preparations and their role in the stabilization of the structure of protein globule is discussed. The effect of urea (1–10 M) and guanidine hydrochloride (0.25–6 M) on the conformational state and fast internal dynamics of alpha-1-microglobulin is studied by tryptophan fluorescence. The unfolding of the protein under the action of denaturants is attended with pronounced activation of its nanosecond internal dynamics. Alpha-1-microglobulin can regain the initial conformation and internal dynamics typical of native protein after denaturation unfolding of the globule with 10 M urea or 6 M guanidine hydrochloride. Alpha-1-microglobulin isolated by gel chromatography can exist in a partially folded thermodynamically stable state in 4–6 M urea.

Key words

alpha-1-microglobulin multiparametric luminescence analysis internal protein dynamics conformation partially folded state 

Abbreviations

A1M

alpha-1-microglobulin

GdCl

guanidine hydrochloride

GF

gel filtration

IC

immunoadsorption/charcoal

RTTP

room-temperature tryptophan phosphorescence

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Flower, Biochem. J. 318, 1 (1996).Google Scholar
  2. 2.
    M. Allhorn, A. Klapyta, and B. Åkerström, Free Radic. Biol. Med. 38, 557 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Newcomer and D. Ong, Biochim. Biophys. Acta. 1482, 57 (2000).Google Scholar
  4. 4.
    M. Allhorn, T. Berggard, J. Nordberg, et al., Blood. 99, 1894 (2002).CrossRefGoogle Scholar
  5. 5.
    B. Åkerström, L. Logdberg, T. Berggard, et al., Biochim. Biophys. Acta. 1482, 172 (2000).Google Scholar
  6. 6.
    T. Berggard, N. Thelin, C. Falkenberg, et al., Eur. J. Biochem. 245(3), 676 (1997).CrossRefGoogle Scholar
  7. 7.
    Grubb, Clin. Nephrol. 38, S20 (1992).Google Scholar
  8. 8.
    J. Penders and J. R. Delanghe, Clinica Chimica Acta. 346, 107 (2004).CrossRefGoogle Scholar
  9. 9.
    Sala, M. Campagnoli, E. Perani, et al., J. Biol. Chem. 279, 51033 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Larsson, M. Allhorn, and B. Åkerström, Archiv. Biochem. Biophys. 432, 196 (2004).CrossRefGoogle Scholar
  11. 11.
    M. Calero, J. Escribano, A. Grubb, and E. Mendez, J. Biol. Chem. 269, 384 (1994).Google Scholar
  12. 12.
    T. Berggard, A. Cohen, P. Perrson, et al., Protein Science. 8, 2611 (1999).CrossRefGoogle Scholar
  13. 13.
    L. Wester, M. U. Johansson, and B. Åkerström, Protein Expr. Purif. 11, 95 (1997).CrossRefGoogle Scholar
  14. 14.
    T. S. Serchenya, A. P. Drozhdenyuk, A. G. Pryadko et al., Vestsi Nats. Akad. Nav. Belarusi, ser. Khim. Nav. 2, 68 (2006).Google Scholar
  15. 15.
    B. Åkerström, T. Bratt, and J. J. Enghild, FEBS Lett. 362, 50 (1995).CrossRefGoogle Scholar
  16. 16.
    U. K. Laemmli, Nature 227, 680 (1970).CrossRefADSGoogle Scholar
  17. 17.
    V. M. Mazhul’ and D. G. Shcherbin, Biofizika 43, 456 (1998).Google Scholar
  18. 18.
    V. M. Mazhul’, Yu. S. Ermolaev, V. A. Bobrov et al., Vestsi AN BSSR, Ser. Biyal. Nav. No. 6, 52 (1976).Google Scholar
  19. 19.
    S. V. Konev, Electron-excited States of Biopolymers (Nauka i Tekhnika, Minsk, 1965) [in Russian].Google Scholar
  20. 20.
    E. A. Chernitskii, Luminescence and Structural Lability of Proteins in Solution and Cell (Nauka i Tekhnika, Minsk, 1972) [in Russian].Google Scholar
  21. 21.
    A. P. Demchenko, Luminescence and Protein Structure Dynamics (Naukova Dumka, Kiev, 1988) [in Russian].Google Scholar
  22. 22.
    V. M. Mazhul’, S. V. Konev, Yu. S. Ermolaev, et al., Biofizika 28, 980 (1983).Google Scholar
  23. 23.
    J. M. Vanderkooi, D. B. Calhoun, and S. W. Englander, Science 236, 568 (1987).CrossRefADSGoogle Scholar
  24. 24.
    G. B. Strambini, J. Mol. Liq. 42, 155 (1998).CrossRefGoogle Scholar
  25. 25.
    J. V. Mersol, D. G. Steel, and A. Gafni, Biophys. Chem. 48, 281 (1993).CrossRefGoogle Scholar
  26. 26.
    M. Gonnelli, G. B. Strambini, Biochemistry 34(42), 13847 (1995).CrossRefGoogle Scholar
  27. 27.
    V. M. Mazhul’, E. M. Zaitseva and D. G. Shcherbin, Biofizika 45, 965 (2000).Google Scholar
  28. 28.
    V. M. Mazhul, E. M. Zaitseva, M. M. Shavlovsky, et al., Biochemistry 42, 13551 (2003).CrossRefGoogle Scholar
  29. 29.
    V. M. Mazhul’, E. A. Chernitskii, and S. V. Konev, Biofizika 15, 5 (1970).Google Scholar
  30. 30.
    K. K. Turoverov and I. M. Kuznetsova, Mol. Biol. 17, 468 (1983).Google Scholar
  31. 31.
    I. M. Kuznetsova, Doctoral Dissertation in Biology (Institute of Cytology, RAS, St. Petersburg, 2006).Google Scholar
  32. 32.
    V. M. Mazhul’ and S. Zh. Kananovich, Biofizika 49, 413 (2004).Google Scholar
  33. 33.
    E. A. Chernitskii, V. M. Mazhul’, and S. V. Konev, Biofizika 13, 581 (1968).Google Scholar
  34. 34.
    D. A. Dolgikh, R. I. Gilmanshin, E. V. Brazhnikov, et al., FEBS Lett. 136, 311 (1981).CrossRefGoogle Scholar
  35. 35.
    M. Ohgushi and A. Wada, FEBS Lett. 164, 21 (1983).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • V. M. Mazhul
    • 1
    Email author
  • S. Zh. Kananovich
    • 1
  • T. S. Serchenya
    • 2
  • O. V. Sviridov
    • 2
  1. 1.Institute of Biophysics and Cell EngineeringNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Bioorganic Chemistry National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations