Biophysics

, 51:23 | Cite as

Solution of the spatial structure of dimeric transmembrane domains of proteins by heteronuclear NMR spectroscopy and molecular modeling

  • P. E. Volynsky
  • E. V. Bocharov
  • D. E. Nolde
  • Ya. A. Vereschaga
  • M. L. Mayzel
  • K. S. Mineev
  • E. A. Mineeva
  • Yu. E. Pustovalova
  • I. A. Gagnidze
  • R. G. Efremov
  • A. S. Arseniev
Article

Abstract

Membrane proteins play an important role in various biological processes. An approach combining NMR spectroscopy with molecular modeling was used to study the spatial structure and intramolecular dynamics of protein transmembrane domains consisting of two interacting α-helices. The approach was tested with model transmembrane domains and yielded detailed atomic-level data on the protein-protein and protein-lipid interactions.

Key words

membrane proteins molecular dynamics membrane-mimicking media glycophorin A 

References

  1. 1.
    K. R. Mackenzie, Chem. Rev. 106, 1931 (2006).CrossRefGoogle Scholar
  2. 2.
    E. Li and K. Hristova, Biochemistry 45, 6241 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Sattler, J. Schleucher, and C. Griesinger, Nucl. Magn. Reson. Spectrosc. 34, 93 (1999).CrossRefGoogle Scholar
  4. 4.
    J. Cavanagh, W. J. Fairbrother, A. G. Palmer, and N. J. Skelton, Protein NMR Spectroscopy: Principles and Practice, 2nd ed. (Academic, San Diego, 2006).Google Scholar
  5. 5.
    J.J. Chou, S. Gaemers, B. Howder, et al., J. Biomol. NMR 21, 377 (2001).CrossRefGoogle Scholar
  6. 6.
    D. M. Korzhnev, M. Billeter, A. S. Arseniev, and V. Y. Orekhov, Prog. Nucl. Magn. Reson. Spectrosc. 38, 197 (2001).CrossRefGoogle Scholar
  7. 7.
    G. Otting, Prog. Nucl. Magn. Reson. Spectr. 31, 259 (1997).CrossRefGoogle Scholar
  8. 8.
    P. Guntert, C. Mumenthaler, and K. Wuthrich, J. Mol. Biol. 273, 283 (1997).CrossRefGoogle Scholar
  9. 9.
    C. Zwahlen, P. Legault, S. J. F. Vincent, et al., Am. Chem. Soc. 119, 6711 (1997).CrossRefGoogle Scholar
  10. 10.
    E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Mod. 7, 306 (2001).Google Scholar
  11. 11.
    O. Berger, O. Edholm, and F. Jahnig, Biophys. J. 72, 2002 (1997).ADSGoogle Scholar
  12. 12.
    R. G. Efremov and G. Vergoten, J. Phys. Chem. 99, 10 658 (1995).CrossRefGoogle Scholar
  13. 13.
    R. G. Efremov, D. E. Nolde, G. Vergoten, and A.S. Arseniev, Biophys. J. 76, 2448 (1999).CrossRefGoogle Scholar
  14. 14.
    B. von Freyberg and W. Braun, J. Comput. Chem. 12, 1065 (1991).CrossRefGoogle Scholar
  15. 15.
    P. E. Volynsky, D. E. Nolde, A. S. Arseniev, and R. G. Efremov, Bioorg. Khim. 26, 163 (2000) [Rus. J. Bioorg. Chem. 26, 115].Google Scholar
  16. 16.
    R. G. Efremov, Y. A. Vereshaga, P. E. Volynsky, et al., J. Comput. Aided Mol. Des. 20, 27 (2006).CrossRefADSGoogle Scholar
  17. 17.
    D. Langosch, B. Brosig, H. Kolmar, and H. J. Fritz, J. Mol. Biol. 263, 525 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2006

Authors and Affiliations

  • P. E. Volynsky
    • 1
  • E. V. Bocharov
    • 1
  • D. E. Nolde
    • 1
  • Ya. A. Vereschaga
    • 1
  • M. L. Mayzel
    • 1
  • K. S. Mineev
    • 1
  • E. A. Mineeva
    • 1
  • Yu. E. Pustovalova
    • 1
  • I. A. Gagnidze
    • 1
  • R. G. Efremov
    • 1
  • A. S. Arseniev
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations