Biophysics

, Volume 51, Issue 6, pp 887–891 | Cite as

Solitonlike and nonsoliton modes of interaction of taxis waves (illustrated with an example of bacterial population waves)

  • M. A. Tsyganov
  • G. R. Ivanitsky
Cell Biophysics

Abstract

It was shown earlier that during collisions bacterial population waves may either penetrate one another or stop. In this communication, the mechanism of these two interaction modes is considered in detail. It is shown on the basis of theoretical and experimental results that this interaction is a graphic example confirming one of the characteristic properties of waves in cross-diffusion systems.

Key words

taxis bacterial waves self-organization cross-diffusion solitons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Ivanitsky, A. B. Medvinsky, and M. A. Tsyganov, Usp. Fiz. Nauk 161(4), 13 (1991).Google Scholar
  2. 2.
    G. R. Ivanitsky, A. B. Medvinsky, and M. A. Tsyganov, Usp. Fiz. Nauk 164(10), 1041 (1994).Google Scholar
  3. 3.
    J. Adler, Science 153, 708 (1966).CrossRefADSGoogle Scholar
  4. 4.
    J. Adler, Bacteriol. 92, 121 (1966).Google Scholar
  5. 5.
    E. O. Budrene, Biofizika 33, 373 (1988).Google Scholar
  6. 6.
    K. Agladze, E. Budrene, G. Ivanitsky, et al., Proc. Roy. Soc. Lond. B 253, 131 (1993).CrossRefADSGoogle Scholar
  7. 7.
    E. F. Keller and L. A. Segel, J. Theor. Biol. 30, 225 (1971).CrossRefGoogle Scholar
  8. 8.
    M. A. Tsyganov, I. B. Kresteva, A. B. Medvinsky, and G. R. Ivanitsky, Dokl. RAN 333(4), 532 (1993).Google Scholar
  9. 9.
    D. E. Koshland, Jr., Physiol. Rev. 59, 811 (1979).Google Scholar
  10. 10.
    A. B. Medvinsky, M. A. Tsyganov, I. B. Kresteva, et al., Physica D 64, 267 (1993).MATHCrossRefADSGoogle Scholar
  11. 11.
    M. A. Tsyganov, J. Brindley, A. V. Holden, and V. N. Biktashev, Phys. Rev. Lett. 91(21), 218102 (2003).Google Scholar
  12. 12.
    M. A. Tsyganov, J. Brindley, A. V. Holden, and V. N. Biktashev, Physica D 197(1–2), 18 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. A. Tsyganov and V. N. Biktashev, Phys. Rev. E 70(3), 031901 (2004).Google Scholar
  14. 14.
    V. N. Biktashev, J. Brindley, A. V. Holden, and M. A. Tsyganov, Chaos 14(4), 988 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    J. E. Truscott and J. Brindley, Philos. Trans. R. Soc. A 374, 703 (1994).ADSGoogle Scholar
  16. 16.
    H. H. Rotermund, S. Jakubith. A. von Oertzen, and G. Ertl, Phys. Rev. Lett. 66, 3083 (1991).CrossRefADSGoogle Scholar
  17. 17.
    A. von Oertzen, A. S. Mikhailov, H. H. Rotermund, and G. Ertl, J. Phys. Chem. B 102, 4966 (1998).CrossRefGoogle Scholar
  18. 18.
    O. A. Mornev, O. V. Aslandi, R. R. Aliev, and L. M. Chailakhyan, Dokl. Ross. Akad. Nauk 347, 123 (1998).Google Scholar
  19. 19.
    O. V. Aslandi and O. A. Mornev, Biofizika 41(5), 953 (1996).Google Scholar
  20. 20.
    V. N. Biktashev and M. A. Tsyganov, Proc. Roy. Soc. Lond. A 461, 3711 (2005).ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    J. D. Murray, Mathematical Biology (Springer, Berlin, 1993).MATHCrossRefGoogle Scholar
  22. 22.
    A. J. Perumpanani, J. A. Sherratt, and J. Norbury, Nonlinearity 10, 1599 (1997).MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    A. J. Perumpanani and H. M. Byrne, Eur. J. Cancer 35(8), 1274 (1999).CrossRefGoogle Scholar
  24. 24.
    J. A. Sherratt, J. Math. Biol. 43, 297 (2001).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. A. Tsyganov
    • 1
  • G. R. Ivanitsky
    • 1
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations