Advertisement

Biophysics

, Volume 51, Issue 5, pp 842–848 | Cite as

On the titin isoforms

  • I. M. Vikhlyantsev
  • Z. A. Podlubnaya
Discussions

Abstract

By our modified SDS gel electrophoresis and immunoblotting, the isoform composition of titin in skeletal and cardiac muscles of human and animals was studied to reveal new titin forms above 3700 kDa in size. The data obtained suggest that the new large-size titin species are the intact (original) isoforms of this protein, whereas the known N2A, N2B, and N2BA titin bands in electrophoregrams correspond to their fragments.

Key words

titin isoforms skeletal muscles cardiac muscles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Labeit and B. Kolmerer, Science 270, 293 (1995).CrossRefADSGoogle Scholar
  2. 2.
    L. Tskhovrebova and J. Trinick, J. Mol. Biol. 265, 100 (1997).CrossRefGoogle Scholar
  3. 3.
    D. O. Fürst, M. Osborn, R. Nave, and K. Weber, J. Cell Biol. 106, 1563 (1988).CrossRefGoogle Scholar
  4. 4.
    R. Tatsumi, K. Maeda, A. Hattori, and K. Takahashi, J. Muscle Res. Cell Motil. 22(2), 149 (2001).CrossRefGoogle Scholar
  5. 5.
    K. Wang, J. McClure, and A. Tu, Proc. Natl. Acad. Sci. USA 76, 3698 (1979).CrossRefADSGoogle Scholar
  6. 6.
    K. Maruyama, S. Kimura, K. Ohashi, and Y. Kuwano, J. Biochem. 89, 701 (1981).Google Scholar
  7. 7.
    K. Maruyama, S. Kimura, H. Yoshidomi, et al., J. Biochem. 95, 1423 (1984).Google Scholar
  8. 8.
    K. Wang, R. Ramirez-Mitchell, and D. Palter, Proc. Natl. Acad. Sci. USA 81, 3685 (1984).CrossRefADSGoogle Scholar
  9. 9.
    Y. Itoh, S. Kimura, T. Suzuki, et al., J. Biochem. 100, 439 (1986).Google Scholar
  10. 10.
    K. Wang and J. Wright, J. Cell Biol. 107, 2199 (1988).CrossRefGoogle Scholar
  11. 11.
    K. Wang, R. McCarter, J. Wright, et al., Proc. Natl. Acad. Sci. USA 88, 7101 (1991).CrossRefADSGoogle Scholar
  12. 12.
    R. Horowits, Biophys. J. 61, 392 (1992).ADSGoogle Scholar
  13. 13.
    R. Tatsumi and A. Hattori, Anal. Biochem. 224, 28 (1995).CrossRefGoogle Scholar
  14. 14.
    K. Trombitas, J. Jin, and H. Granzier, Circ. Res. 77, 856 (1995).Google Scholar
  15. 15.
    H. Granzier and T. Irving, Biophys. J. 68, 1027 (1995).ADSGoogle Scholar
  16. 16.
    I. Spierts, H. Akster, and H. Granzier, J. Comp. Physiol. B. 167, 543 (1997).CrossRefGoogle Scholar
  17. 17.
    A. Freiburg, K. Trombitas, W. Hell, et al., Circ. Res. 86, 1114 (2000).Google Scholar
  18. 18.
    M. L. Bang, T. Centner, F. Fornoff, et al., Circ. Res. 89, 1065 (2001).Google Scholar
  19. 19.
    M. Helmes, K. Trombitas, T. Centner, et al., Circ. Res. 84, 1339 (1999).Google Scholar
  20. 20.
    K. Trombitas, A. Redkar, T. Centner, et al., Biophys. J. 79, 3226 (2000).CrossRefGoogle Scholar
  21. 21.
    O. Cazorla, A. Freiburg, M. Helmes, et al., Circ. Res. 86, 59 (2000).Google Scholar
  22. 22.
    S. Bell, L. Nyland, M. Tischler, et al., Circ. Res. 87, 235 (2000).Google Scholar
  23. 23.
    K. Trombitás, Y. Wu, D. Labeit, et al., Am. J. Physiol. Heart Circ. Physiol. 281, H1793 (2001).Google Scholar
  24. 24.
    C. Neagoe, C. Opitz, I. Makarenko, and W. Linke, J. Muscle Res. Cell Motil. 24, 175 (2003).CrossRefGoogle Scholar
  25. 25.
    C. Warren, P. Krzesinski, and M. Greaser, Electrophoresis 24, 1695 (2003).CrossRefGoogle Scholar
  26. 26.
    I. Makarenko, C. Opitz, M. Leake, et al., Circ. Res. 95, 708 (2004).CrossRefGoogle Scholar
  27. 27.
    C. Opitz, M. Leake, I. Makarenko, et al., Circ. Res. 94, 967 (2004).CrossRefGoogle Scholar
  28. 28.
    S. Nagueh, G. Shan, Y. Wu, et al., Circulation 110, 155 (2004).CrossRefGoogle Scholar
  29. 29.
    L. Prado, I. Makarenko, C. Andresen, et al., J. Gen. Physiol. 126, 461 (2005).CrossRefGoogle Scholar
  30. 30.
    I. M. Vikhlyantsev, Z. A. Podlubnaya, and I. B. Kozlovskaya, Dokl. Ross. Akad. Nauk 395(6), 828 (2004).Google Scholar
  31. 31.
    I. M. Vikhlyantsev, S. L. Malyshev, B. S. Shenkman, and Z. A. Podlubnaya, Biofizika 49(6), 995 (2004).Google Scholar
  32. 32.
    I. M. Vikhlyantsev, Z. A. Podlubnaya, B. S. Shenkman, and I. B. Kozlovskaya, Dokl. Ross. Akad. Nauk 407(5), 692 (2006).Google Scholar
  33. 33.
    H. Granzier and K. Wang, Electrophoresis 14, 56 (1993).CrossRefGoogle Scholar
  34. 34.
    C. C. Gregorio, H. Granzier, H. Sorimachi, and S. Labeit, Curr. Opin. Cell Biol. 11, 18 (1999).CrossRefGoogle Scholar
  35. 35.
    L. Tskhovrebova and J. Trinick, Nature Rev. 4, 679 (2003).CrossRefGoogle Scholar
  36. 36.
    H. Towbin, T. Staehlin, and J. Gordon, Proc. Natl. Acad. Sci. USA 76, 4350 (1970).CrossRefADSGoogle Scholar
  37. 37.
    K. Maruyama, Int. Rev. Cytol. 104, 81 (1986).CrossRefGoogle Scholar
  38. 38.
    R. Horowits, E. Kempner, M. Bisher, and R. Podolsky, Nature 323, 160 (1986).CrossRefADSGoogle Scholar
  39. 39.
    I. M. Vikhlyantsev and Z. A. Podlubnaya, Biofizika 49, 430 (2004).Google Scholar
  40. 40.
    I. M. Vikhlyantsev and Z. A. Podlubnaya, in Abstracts Book of the International Symposium “Biological Motility: Basic Research and Practice” (Pushchino, Russia, 2006), pp. 38–39.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. M. Vikhlyantsev
    • 1
  • Z. A. Podlubnaya
    • 2
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Pushchino State UniversityPushchino, Moscow RegionRussia

Personalised recommendations