Biophysics

, Volume 51, Issue 5, pp 781–788 | Cite as

Dynamic instabilities in the microtubule cytoskeleton: A state diagram

  • K. A. Katrukha
  • G. T. Guriya
Cell Biophysics
  • 51 Downloads

Abstract

The dynamics of microtubule growth and disassembly is considered in the framework of the theory of nonequilibrium reaction-diffusion systems. The phase diagram contains regions corresponding to stable stationary and nonstationary solutions. Dynamic instabilities can arise from nonequilibrium kinetic transitions. Agents affecting the microtubule dynamics are classed into four types, and the interplay of their effects is analyzed.

Key words

tubulin cytoskeleton phase diagram microtubule dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alberts, A. Johnson, J. Lewis, et al., Molecular Biology of Cell (Garland Science, New York, 2002).Google Scholar
  2. 2.
    I. A. Vorobjev, I. S. Grigoriev, and G. G. Borisy, Ontogenez 31, 420 (2000).Google Scholar
  3. 3.
    P. J. Sammak and G. G. Borisy, Nature 332, 724 (1988).CrossRefADSGoogle Scholar
  4. 4.
    T. J. Mitchison and M. W. Kirschner, Nature 312, 237 (1984).CrossRefADSGoogle Scholar
  5. 5.
    A. Desai and T. J. Mitchison, Annu. Rev. Cell Dev. Biol. 13, 83 (1997).CrossRefGoogle Scholar
  6. 6.
    M. Dogterom and S. Leibler, Phys. Rev. Lett. 70, 1347 (1993).CrossRefADSGoogle Scholar
  7. 7.
    I. M. Janosi, D. Chretien, and H. Flyvbjerg, Biophys. J. 83(3), 1317 (2002).CrossRefADSGoogle Scholar
  8. 8.
    N. Caudron, O. Valiron, Y. Usson, et al., J. Mol. Biol. 297, 211 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Caudron, G. Bunt, P. Bastiaens, and E. Karsenti, Science 309, 1373 (2005).CrossRefADSGoogle Scholar
  10. 10.
    B. Houchmandzadeh and M. Vallade, Phys. Rev. E. 53(6), 6320 (1996).CrossRefADSGoogle Scholar
  11. 11.
    M. Hammele and W. Zimmermann, Phys. Rev. E. 67, 021903 (2003).Google Scholar
  12. 12.
    P. Niethammer, P. Bastiaens, and E. Karsenti, Science 303(5665), 1862 (2004).CrossRefADSGoogle Scholar
  13. 13.
    A. M. Zhabotinsky, Concentrational Oscillations (Nauka, Moscow, 1974) [in Russian].Google Scholar
  14. 14.
    G. Nikolis and N. Prigogine, Self-organization in Nonequilibrium Systems: From Dissipative Structures to Ordering through Fluctuations (Mir, Moscow, 1979) [in Russian].Google Scholar
  15. 15.
    A. J. Koch and H. Meinhardt, Rev. Modern Physics 66, 1481 (1994).CrossRefADSGoogle Scholar
  16. 16.
    G. Haken, Synergetics (Mir, Moscow, 1980) [in Russian].MATHGoogle Scholar
  17. 17.
    N. V. Efimov and E. R. Rozendorn, Linear Algebra and Multidimensional Geometry (Nauka, Moscow, 1970) [in Russian].Google Scholar
  18. 18.
    E. Karsenti and I. Vernos, Science 294, 543 (2001).CrossRefADSGoogle Scholar
  19. 19.
    L. Wilson, D. Panda, and M. Jordan, Cell Struct. Function 24, 328 (1999).Google Scholar
  20. 20.
    S. S. L. Andersen, Trends Cell Biol. 10(7), 261 (2000).CrossRefMathSciNetGoogle Scholar
  21. 21.
    C. I. Rubin and G. F. Atweh, J. Cell Biochem. 93(2), 242 (2004).CrossRefGoogle Scholar
  22. 22.
    A. Schmidt and A. Hall, Genes Dev. 16, 1587 (2002).CrossRefGoogle Scholar
  23. 23.
    T. A. Potapova, J. R. Daum, B. D. Pittman, et al., Nature 440, 954 (2006).CrossRefADSGoogle Scholar
  24. 24.
    E. M. Mandelkow, G. Lange, A. Jagla, et al., EMBO J. 7, 357 (1988).Google Scholar
  25. 25.
    V. I. Arnold, Supplementary Chapters to the Theory of Ordinary Differential Equations (Nauka, Moscow, 1978) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • K. A. Katrukha
    • 1
  • G. T. Guriya
    • 2
  1. 1.Moscow Physicotechnical InstituteDolgoprudnyi, Moscow RegionRussia
  2. 2.Hematological Research CenterRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations