, Volume 51, Issue 3, pp 364–369 | Cite as

Effect of temperature on the internal dynamics and the conformational state of bacterial alkaline phosphatase

  • V. M. Mazhul’
  • S. Zh. Kananovich
Molecular Biophysics


Room-temperature tryptophan phosphorescence and fluorescence have been used to study the slow internal dynamics and the conformational state of Escherichia coli alkaline phosphatase in the temperature range from 0 to 100°C. The heating of alkaline phosphatase solution within the 0–70°C range has been shown to amplify considerably the internal dynamics. The further raise of temperature to 95°C brings about a reversible increase in the internal dynamics and partial unfolding of the globule. The heating of protein solution within a narrow temperature range of 97–100°C gives rise to irreversible conformational transition with complete globule unfolding, sharp amplification of the internal dynamics, and loss of enzymatic activity.

Key words

Escherichia coli alkaline phosphatase slow internal dynamics conformation functional activity room-temperature tryptophan phosphorescence fluorescence 



room-temperature tryptophan phosphorescence


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Mazhul’, Yu. S. Ermolaev, and S. V. Konev, Zh. Prikl. Spectrosk. 32(5), 903–907 (1980).Google Scholar
  2. 2.
    V. M. Mazhul’, S. V. Konev, Yu. S. Ermolaev, et al., Biofizika 28(6), 980–984 (1983).Google Scholar
  3. 3.
    V. M. Mazhul’, E. M. Zaitseva, and D. G. Shcherbin, Biofizika 45(6), 965–989 (2000).Google Scholar
  4. 4.
    V. M. Mazhul, E. M. Zaitseva, M. M. Shavlovsky, et al., Biochemistry 42, 13551–13557 (2003).CrossRefGoogle Scholar
  5. 5.
    V. M. Mazhul’, E. M. Zaitseva, and D. G. Shcherbin, in Biophysics of Live Systems: from Molecule to Organism, Ed. by I. D. Volotovskii (Belsens, Minsk, 2002), pp. 27–40 [in Russian].Google Scholar
  6. 6.
    G. B. Strambini, J. Mol. Liq. 42, 155–165 (1998).CrossRefGoogle Scholar
  7. 7.
    M. Gonnelli and G. B. Strambini, Biochemistry 34(42), 13847–13857 (1995).CrossRefGoogle Scholar
  8. 8.
    J. M. Vanderkooi, D. B. Calhoun, and S. W. Englander, Science 236, 568–569 (1987).CrossRefADSGoogle Scholar
  9. 9.
    J. V. Mersol, D. G. Steel, and A. Gafni, Biophys. Chem. 48, 281–291 (1993).CrossRefGoogle Scholar
  10. 10.
    M. Gonnelli and G. B. Strambini, Biophys. J. 65, 131–137 (1993).CrossRefGoogle Scholar
  11. 11.
    F. Talgyesi, B. Ullrich, and J. Fidy, Biochem. Biophys. Acta 1435, 1–6 (1999).Google Scholar
  12. 12.
    S. V. Konev, Electron-excited States of Biopolymers (Nauka i Tekhnika, Minsk, 1965) [in Russian].Google Scholar
  13. 13.
    A. P. Demchenko, Luminescence and Dynamics of Protein Structure (Naukova Dumka, Kiev, 1988) [in Russian].Google Scholar
  14. 14.
    V. M. Mazhul’ and D. G. Shcherbin, Biofizika 43(3), 456–462 (1998).Google Scholar
  15. 15.
    M. L. Applebury, B. P. Johnson, and J. E. Coleman, J. Biol. Chem. 245, 4968–4976 (1970).Google Scholar
  16. 16.
    J. F. Chlebowski and S. Mabrey, J. Biol. Chem. 252(20), 7042–7052 (1977).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. M. Mazhul’
    • 1
  • S. Zh. Kananovich
    • 1
  1. 1.Institute of Biophysics and Cell EngineeringNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations