Advertisement

Biophysics

, Volume 51, Issue 3, pp 359–363 | Cite as

Tryptophan phosphorescence study of the internal dynamics of human erythrocyte membrane proteins upon spectrin modification

  • V. M. Mazhul’
  • I. V. Galets
Molecular Biophysics

Abstract

Room-temperature tryptophan phosphorescence has been used analyze the slow (millisecond) internal dynamics of proteins in isolated native human erythrocyte membranes, after removal of 95% of spectrin, and after thermal denaturation of spectrin or medium acidification to pH 6.0–4.0, as well as the internal dynamics of spectrin extracted from the membrane in solution. The integral membrane proteins prove to differ sharply from spectrin in their structural and dynamic state. The millisecond movements of structural elements in integral proteins are considerably hindered as compared with spectrin. Removal of the bulk of spectrin from membranes leads to amplification of slow fluctuations in the structure of integral proteins. This suggests involvement of spectrin in the control of the structural and dynamic state of the erythrocyte membrane proteins. The acidification of the medium to pH 6.0–4.0 decreases the internal dynamics of native membrane proteins, which is explained by the pH-induced aggregation of spectrin. After thermal denaturation of spectrin, there is no pH-induced increase in the rigidity of the structure of membrane proteins.

Key words

room-temperature tryptophan phosphorescence protein internal dynamics isolated human erythrocyte membranes spectrin 

Abbreviations

ID

internal dynamics

RTTP

room-temperature tryptophan phosphorescence

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Mazhul’, E. M. Zaitseva, and D. G. Shcherbin, Biofizika 45(6), 965–989 (2000).Google Scholar
  2. 2.
    V. M. Mazhul’, E. M. Zaitseva, and D. G. Shcherbin, Vestsi NAN Belarusi, No. 4, 124–143 (2000).Google Scholar
  3. 3.
    G. B. Strambini, J. Mol. Liq. 42, 155–165 (1989).CrossRefGoogle Scholar
  4. 4.
    G. B. Strambini and M. Gonnelli, J. Am. Chem. Soc. 117, 7646–7651 (1995).CrossRefGoogle Scholar
  5. 5.
    J. M. Vanderkooi, Topics in Fluorescence Spectroscopy, Ed. by J. R. Lakowicz (Plenum Press, New York, 1992), pp. 113–136.Google Scholar
  6. 6.
    J. A. Shauere, D. G. Steel, and A. Gafni, Methods Enzymol. 278, 49–71 (1997).Google Scholar
  7. 7.
    V. M. Mazhul’, E. M. Zaitseva, M. M. Shavlovsky, et al., Biochemistry 42, 13551–13557 (2003).CrossRefGoogle Scholar
  8. 8.
    V. M. Mazhul’, E. M. Zaitseva, and D. G. Shcherbin, Zh. Prikl. Spektrosk. 69(2), 186–191 (2002).Google Scholar
  9. 9.
    V. M. Mazhul’, E. M. Zaitseva, L. G. Mitskevich, et al., Biofizika 44(6), 1010–1016 (1999).Google Scholar
  10. 10.
    V. M. Mazhul’ and S. Zh. Kananovich, Biofizika 49(3), 413–423 (2004).Google Scholar
  11. 11.
    M. L. Saviotti and W. C. Galley, Proc. Natl. Acad. Sci. USA 71(10), 4154–4158 (1974).CrossRefADSGoogle Scholar
  12. 12.
    V. M. Mazhul’, Yu. S. Ermolaev, V. A. Bobrov, et al., Vestsi AN BSSR, Ser. Biol. Nauki, No. 6, 52–56 (1976).Google Scholar
  13. 13.
    V. M. Mazhul’, Yu. S. Ermolaev, and S. V. Konev, Zh. Prikl. Spektrosk. 32(5), 903–907 (1980).Google Scholar
  14. 14.
    V. Mazhul’, D. Shcharbin, I. Zavodnik, et al., Cell. Biol. Intern. 23, 345–350 (1999).CrossRefGoogle Scholar
  15. 15.
    V. M. Mazhul’, D. G. Shcherbin, I. V. Ivin, E. M. Zaitseva, and S. V. Driamov, Spectroscopy of Biological Molecules: New Directions, Ed. by J. Greve, G. J. Puppels, and C. Otto (Kluwer Acad. Publ., Dordrecht, 1999) pp. 19–20.Google Scholar
  16. 16.
    V. Mazhul’, T. Chernovets, E. Zaitseva, and D. Shcharbin, Cell. Biol. Intern. 27, 571–578 (2003).CrossRefGoogle Scholar
  17. 17.
    V. M. Mazhul’, E. M. Zaitseva, D. G. Shcherbin, and I. V. Galets, Zh. Prikl. Spektrosk. 70(3), 346–350 (2003).Google Scholar
  18. 18.
    G. T. Dodge, C. Mitchell, D. J. Hanahan, Arch. Biochem. Biophys. 100(2), 119–140 (1963).CrossRefGoogle Scholar
  19. 19.
    M. A. K. Markwell, S. M. Haas, and N. E. Tolbert, Anal. Biochem. 87(2), 206–210 (1978).CrossRefGoogle Scholar
  20. 20.
    V. Bennett, Methods Enzymol. 96, 313–324 (1983).CrossRefGoogle Scholar
  21. 21.
    U. K. Laemmly, Nature 227, 680–685 (1970).CrossRefADSGoogle Scholar
  22. 22.
    V. M. Mazhul’ and D. G. Shcharbin, Proceed. SPIE 2980, 487–495 (1997).ADSGoogle Scholar
  23. 23.
    E. A. Chernitskii, E. I. Slobozhanina, N. M. Kozlova, and V. B. Khodan, Vestsi AN BSSR, Ser. Biol. Nauki, No. 6, 32–38 (1977).Google Scholar
  24. 24.
    E. A. Chernitskii and A. V. Vorobei, Structure and Functions of Erythrocytic Membranes (Nauka i Tekhnika, Minsk, 1981) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. M. Mazhul’
    • 1
  • I. V. Galets
    • 1
  1. 1.Institute of Biophysics and Cell EngineeringNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations