Biochemistry (Moscow)

, Volume 84, Issue 11, pp 1411–1423 | Cite as

Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage

  • A. GalkinEmail author


Ischemic stroke and neonatal hypoxic-ischemic encephalopathy are two of the leading causes of disability in adults and infants. The energy demands of the brain are provided by mitochondrial oxidative phosphorylation. Ischemia/reperfusion (I/R) affects the production of ATP in brain mitochondria, leading to energy failure and death of the affected tissue. Among the enzymes of the mitochondrial respiratory chain, mitochondrial complex I is the most sensitive to I/R; however, the mechanisms of its inhibition are poorly understood. This article reviews some of the existing data on the mitochondria impairment during I/R and proposes two distinct mechanisms of complex I damage emerging from recent studies. One mechanism is a reversible dissociation of natural flavin mononucleotide cofactor from the enzyme I after ischemia. Another mechanism is a modification of critical cysteine residue of complex I involved into the active/deactive conformational transition of the enzyme. I describe potential effects of these two processes in the development of mitochondrial I/R injury and briefly discuss possible neuroprotective strategies to ameliorate I/R brain injury.


stroke ischemia-reperfusion injury mitochondria complex I flavin thiols nitrosation 


A/D transition

active/deactive transition


flavin adenine dinucleotide


oxidized/reduced flavin mononucleotide






middle cerebral artery occlusion




reverse electron transfer


reactive oxygen species


tricarboxylic acid (cycle)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I am grateful to Dr. Anna Stepanova and Dr. Vadim Ten for critical reading of the manuscript. I also wish to thank Dr. Vera Grivennikova for the help with the Russian version of this review and valuable discussions. Thanks are due to Nicole Sayles for her help in the preparation of the review.


The work in the author’s laboratory was supported by the NIH grant NS-100850 and MRC UK grants G1100051 and MR/L007339/1.


  1. 1.
    Lee, A. C., Kozuki, N., Blencowe, H., Vos, T., Bahalim, A., Darmstadt, G. L., Niermeyer, S., Ellis, M., Robertson, N. J., Cousens, S., and Lawn, J. E. (2013) Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990, Pediatr. Res., 74, 50–72, doi: Scholar
  2. 2.
    Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D., Borden, W. B., Bravata, D. M., Dai, S., Ford, E. S., Fox, C. S., Fullerton, H. J., Gillespie, C., Hailpern, S. M., Heit, J. A., Howard, V. J., Kissela, B. M., Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D., Makuc, D. M., Marcus, G. M., Marelli, A., Matchar, D. B., Moy, C. S., Mozaffarian, D., Mussolino, M. E., Nichol, G., Paynter, N. P., Soliman, E. Z., Sorlie, P. D., Sotoodehnia, N., Turan, T. N., Virani, S. S., Wong, N. D., Woo, D., Turner, M. B., and American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2012) Heart disease and stroke statistics — 2012 update: a report from the American Heart Association, Circulation, 125, e2–e220.CrossRefGoogle Scholar
  3. 3.
    Siesjo, B. K., Elmer, E., Janelidze, S., Keep, M., Kristian, T., Ouyang, Y. B., and Uchino, H. (1999) Role and mechanisms of secondary mitochondrial failure, Acta Neurochir. Suppl., 73, 7–13.PubMedGoogle Scholar
  4. 4.
    Vannucci, R. C., Towfighi, J., and Vannucci, S. J. (2004) Secondary energy failure after cerebral hypoxia-ischemia in the immature rat, J. Cereb. Blood Flow Metab., 24, 1090–1097.CrossRefGoogle Scholar
  5. 5.
    Hertz, L. (2008) Bioenergetics of cerebral ischemia: a cellular perspective, Neuropharmacology, 55, 289–309, doi: Scholar
  6. 6.
    Sims, N. R., and Muyderman, H. (2010) Mitochondria, oxidative metabolism and cell death in stroke, Biochim. Biophys. Acta, 1802, 80–91, doi: Scholar
  7. 7.
    Mracek, T., Drahota, Z., and Houstek, J. (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues, Biochim. Biophys. Acta, 1827, 401–410, doi: Scholar
  8. 8.
    Watmough, N. J., and Frerman, F E. (2010) The electron transfer favoprotein:ubiquinone oxidoreductases, Biochim. Biophys. Acta, 1797, 1910–1916, doi: Scholar
  9. 9.
    Galkin, A. S., Grivennikova, V. G., and Vinogradov, A. D. (1999) H+/2e stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles, FEBS Lett., 451, 157–161.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hirst, J. (2013) Mitochondrial complex I, Annu. Rev. Biochem., 82, 551–575.CrossRefPubMedGoogle Scholar
  11. 11.
    Brandt, U. (2006) Energy converting NADH:quinone oxidoreductases, Annu. Rev. Biochem., 75, 69–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Burbaev, D. S., Moroz, I. A., Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1989) Ubisemiquinone in the NADH-ubiquinone reductase region of the mitochondrial respiratory chain, FEBS Lett., 254, 47–51.CrossRefGoogle Scholar
  13. 13.
    De Jong, A. M., and Albracht, S. P. (1994) Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone, Eur. J. Biochem., 222, 975–982.CrossRefPubMedGoogle Scholar
  14. 14.
    Cabrera-Orefice, A., Yoga, E. G., Wirth, C., Siegmund, K., Zwicker, K., Guerrero-Castillo, S., Zickermann, V., Hunte, C., and Brandt, U. (2018) Locking loop movement in the ubiquinone pocket of complex I disengages the proton pumps, Nat. Commun., 9, 4500, doi: Scholar
  15. 15.
    Vinogradov, A. D., Gavrikova, E. V., Grivennikova, V. G., Zharova, T. V., and Zakharova, N. V. (1999) Catalytic properties of mitochondrial NADH-ubiquinone reductase (Complex I), Biochemistry (Moscow), 64, 136–152.Google Scholar
  16. 16.
    Chance, B., and Hollunger, G. (1960) Energy-linked reduction of mitochondrial pyridine nucleotide, Nature, 185, 666–672.CrossRefPubMedGoogle Scholar
  17. 17.
    Klingenberg, M., and Slenczka, W. (1959) Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships, Biochemische Zeitschrift, 331, 486–517.PubMedGoogle Scholar
  18. 18.
    Folbergrova, J., Ljunggren, B., Norberg, K., and Siesjo, B. K. (1974) Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex, Brain Res., 80, 265–279, doi: Scholar
  19. 19.
    Solberg, R., Enot, D., Deigner, H. P., Koal, T., Scholl-Burgi, S., Saugstad, O. D., and Keller, M. (2010) Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs, PLoS One, 5, e9606, doi: Scholar
  20. 20.
    Benzi, G., Arrigoni, E., Marzatico, F., and Villa, R. F. (1979) Influence of some biological pyrimidines on the succinate cycle during and after cerebral ischemia, Biochem. Pharmacol., 28, 2545–2550.CrossRefPubMedGoogle Scholar
  21. 21.
    Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., Logan, A., Nadtochiy, S. M., Ord, E. N., Smith, A. C., Eyassu, F., Shirley, R., Hu, C. H., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S., Brookes, P. S., Davidson, S. M., Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., Robinson, A. J., Work, L. M., Frezza, C., Krieg, T., and Murphy, M. P. (2014) Ischemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, 515, 431–435.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sahni, P. V., Zhang, J., Sosunov, S., Galkin, A., Niatsetskaya, Z., Starkov, A., Brookes, P. S., and Ten, V. S. (2017) Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice, Pediatr. Res., 83, 491–497, doi: Scholar
  23. 23.
    Hinkle, P. C., Butow, R. A., Racker, E., and Chance, B. (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles, J. Biol. Chem., 242, 5169–5173.PubMedGoogle Scholar
  24. 24.
    Turrens, J. F., and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J., 191, 421–427.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Grivennikova, V. G., and Vinogradov, A. D. (2006) Generation of superoxide by the mitochondrial complex I, Biochim. Biophys. Acta, 1757, 553–561.CrossRefPubMedGoogle Scholar
  26. 26.
    Pryde, K. R., and Hirst, J. (2011) Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer, J. Biol. Chem., 286, 18056–18065.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Niatsetskaya, Z. V., Sosunov, S. A., Matsiukevich, D., Utkina-Sosunova, I. V., Ratner, V. I., Starkov, A. A., and Ten, V. S. (2012) The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice, J. Neurosci., 32, 3235–3244.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Quinlan, C. L., Perevoshchikova, I. V., Hey-Mogensen, M., Orr, A. L., and Brand, M. D. (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates, Redox. Biol., 1, 304–312.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stepanova, A., Konrad, C., Manfredi, G., Springett, R., Ten, V., and Galkin, A. (2018) The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A, J. Neurochem., 148, 731–745, doi: Scholar
  30. 30.
    Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E., and Kunz, W. S. (2004) Characterization of superoxide-producing sites in isolated brain mitochondria, J. Biol. Chem., 279, 4127–4135.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vinogradov, A. D., and Grivennikova, V. G. (2005) Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria, Biochemistry (Moscow), 70, 120–127.CrossRefGoogle Scholar
  32. 32.
    Galkin, A., and Brandt, U. (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica, J. Biol. Chem., 280, 30129–30135.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kussmaul, L., and Hirst, J. (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria, Proc. Natl. Acad. Sci. USA, 103, 7607–7612.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Stepanova, A., Kahl, A., Konrad, C., Ten, V., Starkov, A. S., and Galkin, A. (2017) Reverse electron transfer results in a loss of flavin from mitochondrial complex I: potential mechanism for brain ischemia reperfusion injury, J. Cereb. Blood Flow Metab., 37, 3649–3658, doi: Scholar
  35. 35.
    Kotlyar, A. B., and Vinogradov, A. D. (1990) Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase, Biochim. Biophys. Acta, 1019, 151–158.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Maklashina, E. O., Sled, V. D., and Vinogradov, A. D. (1994) Hysteresis behavior of complex I from bovine heart mitochondria: kinetic and thermodynamic parameters of retarded reverse transition from the inactive to active state, Biochemistry (Moscow), 59, 946–957.Google Scholar
  37. 37.
    Gavrikova, E. V., and Vinogradov, A. D. (1999) Active/deactive state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling, FEBS Lett., 455, 36–40.CrossRefGoogle Scholar
  38. 38.
    Grivennikova, V. G., Kapustin, A. N., and Vinogradov, A. D. (2001) Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition, J. Biol. Chem., 276, 9038–9044.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Roberts, P. G., and Hirst, J. (2012) The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter, J. Biol. Chem., 287, 34743–34751.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Galkin, A., Meyer, B., Wittig, I., Karas, M., Schagger, H., Vinogradov, A., and Brandt, U. (2008) Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I, J. Biol. Chem., 283, 20907–20913.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Galkin, A., and Moncada, S. (2007) S-nitrosation of mitochondrial complex I depends on its structural conformation, J. Biol. Chem., 282, 37448–37453.CrossRefGoogle Scholar
  42. 42.
    Maklashina, E., Kotlyar, A. B., and Cecchini, G. (2003) Active/de-active transition of respiratory complex I in bacteria, fungi, and animals, Biochim. Biophys. Acta, 1606, 95–103.CrossRefGoogle Scholar
  43. 43.
    Matsuzaki, S., and Humphries, K. M. (2015) Selective inhibition of deactivated mitochondrial complex I by biguanides, Biochemistry, 54, 2011–2021.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Babot, M., Labarbuta, P., Birch, A., Kee, S., Fuszard, M., Botting, C. H., Wittig, I., Heide, H., and Galkin, A. (2014) ND3, ND1 and 39 kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I, Biochim. Biophys. Acta, 1837, 929–939.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Galkin, A., Abramov, A. Y., Frakich, N., Duchen, M. R., and Moncada, S. (2009) Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J. Biol. Chem., 284, 36055–36061.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maklashina, E., Sher, Y., Zhou, H. Z., Gray, M. O., Karliner, J. S., and Cecchini, G. (2002) Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart, Biochim. Biophys. Acta, 1556, 6–12.CrossRefGoogle Scholar
  47. 47.
    Gorenkova, N., Robinson, E., Grieve, D., and Galkin, A. (2013) Conformational change of mitochondrial complex I increases ROS sensitivity during ischaemia, Antioxid. Redox. Signal., 19, 1459–1468.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chouchani, E. T., Methner, C., Nadtochiy, S. M., Logan, A., Pell, V. R., Ding, S., James, A. M., Cocheme, H. M., Reinhold, J., Lilley, K. S., Partridge, L., Fearnley, I. M., Robinson, A. J., Hartley, R. C., Smith, R. A., Krieg, T., Brookes, P. S., and Murphy, M. P. (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I, Nat. Med., 19, 753–759.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Stepanova, A., Konrad, C., Guerrero-Castillo, S., Manfredi, G., Vannucci, S., Arnold, S., and Galkin, A. (2019) Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain, J. Cereb. Blood Flow Metab., 39, 1790–1802, doi:, Epub 2018, Apr 9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kim, M., Stepanova, A., Niatsetskaya, Z., Sosunov, S., Arndt, S., Murphy, M. P., Galkin, A., and Ten, V. S. (2018) Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury, Free Radic. Biol. Med., 124, 517–524, doi: Scholar
  51. 51.
    Hernansanz-Agustin, P., Ramos, E., Navarro, E., Parada, E., Sanchez-Lopez, N., Pelaez-Aguado, L., Cabrera-Garcia, J. D., Tello, D., Buendia, I., Marina, A., Egea, J., Lopez, M. G., Bogdanova, A., and Martinez-Ruiz, A. (2017) Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia, Redox Biol., 12, 1040–1051, doi: Scholar
  52. 52.
    Lopez-Fabuel, I., Le Douce, J., Logan, A., James, A. M., Bonvento, G., Murphy, M. P., Almeida, A., and Bolanos, J. P. (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes, Proc. Natl. Acad. Sci. USA, 113, 13063–13068, doi: Scholar
  53. 53.
    Vinogradov, A. D., and Grivennikova, V. G. (2001) The mitochondrial complex I: progress in understanding of catalytic properties, IUBMB Life, 52, 129–134.CrossRefGoogle Scholar
  54. 54.
    Babot, M., Birch, A., Labarbuta, P., and Galkin, A. (2014) Characterisation of the active/de-active transition of mitochondrial complex I, Biochim. Biophys. Acta, 1837, 1083–1092, doi: Scholar
  55. 55.
    Drose, S., Stepanova, A., and Galkin, A. (2016) Ischemic A/D transition of mitochondrial complex I and its role in ROS generation, Biochim. Biophys. Acta, 1857, 946–957, doi: Scholar
  56. 56.
    Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1992) Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase, Biochim. Biophys. Acta, 1098, 144–150.CrossRefGoogle Scholar
  57. 57.
    Babot, M., and Galkin, A. (2013) Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I, Biochem. Soc. Trans., 41, 1325–1330.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Loskovich, M. V., Grivennikova, V. G., Cecchini, G., and Vinogradov, A. D. (2005) Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition, Biochem. J., 387, 677–683.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Stepanova, A., Valls, A., and Galkin, A. (2015) Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I, Biochim. Biophys. Acta, 1847, 1085–1092, doi: Scholar
  60. 60.
    Ciano, M., Fuszard, M., Heide, H., Botting, C. H., and Galkin, A. (2013) Conformation-specific crosslinking of mitochondrial complex I, FEBS Lett., 587, 867–872.CrossRefGoogle Scholar
  61. 61.
    Blaza, J. N., Vinothkumar, K. R., and Hirst, J. (2018) Structure of the deactive state of mammalian respiratory complex I, Structure, 26, 312–319e3, doi: Scholar
  62. 62.
    Parey, K., Brandt, U., Xie, H., Mills, D. J., Siegmund, K., Vonck, J., Kuhlbrandt, W., and Zickermann, V. (2018) Cryo-EM structure of respiratory complex I at work, Elife, 7, doi:
  63. 63.
    Agip, A. A., Blaza, J. N., Bridges, H. R., Viscomi, C., Rawson, S., Muench, S. P., and Hirst, J. (2018) Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states, Nat. Struct. Mol. Biol., 25, 548–556, doi: Scholar
  64. 64.
    Fiedorczuk, K., Letts, J. A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L. A. (2016) Atomic structure of the entire mammalian mitochondrial complex I, Nature, 537, 644–648, doi: Scholar
  65. 65.
    Zhu, J., Vinothkumar, K. R., and Hirst, J. (2016) Structure of mammalian respiratory complex I, Nature, 536, 354–358, doi: Scholar
  66. 66.
    Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C., and Brandt, U. (2015) Mechanistic insight from the crystal structure of mitochondrial complex I, Science, 347, 44–49.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Koopman, W. J., Willems, P. H., and Smeitink, J. A. (2012) Monogenic mitochondrial disorders, N. Engl. J. Med., 366, 1132–1141, doi: Scholar
  68. 68.
    Stefanatos, R., and Sanz, A. (2011) Mitochondrial complex I: a central regulator of the aging process, Cell Cycle, 10, 1528–1532.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Breuer, M. E., Koopman, W. J., Koene, S., Nooteboom, M., Rodenburg, R. J., Willems, P. H., and Smeitink, J. A. (2013) The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases, Neurobiol. Dis., 51, 27–34, doi: Scholar
  70. 70.
    Ndubuizu, O., and LaManna, J. C. (2007) Brain tissue oxygen concentration measurements, Antioxid. Redox. Signal., 9, 1207–1219.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Madsen, P. L., Holm, S., Herning, M., and Lassen, N. A. (1993) Average blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety-Schmidt technique, J. Cereb. Blood Flow Metab., 13, 646–655, doi: Scholar
  72. 72.
    Reneau, D. D., Guilbeau, E. J., and Null, R. E. (1977) Oxygen dynamics in brain, Microvasc. Res., 13, 337–344.CrossRefGoogle Scholar
  73. 73.
    Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W. (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem., 239, 18–30.PubMedGoogle Scholar
  74. 74.
    Hillered, L., Siesjo, B. K., and Arfors, K. E. (1984) Mitochondrial response to transient forebrain ischemia and recirculation in the rat, J. Cereb. Blood Flow Metab., 4, 438–446, doi: Scholar
  75. 75.
    Kristian, T. (2004) Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage, Cell Calcium, 36, 221–233, doi: Scholar
  76. 76.
    Sugawara, T., Lewen, A., Noshita, N., Gasche, Y., and Chan, P. H. (2002) Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats, J. Neurotrauma, 19, 85–98, doi: Scholar
  77. 77.
    Astrup, J., Siesjo, B. K., and Symon, L. (1981) Thresholds in cerebral ischemia — the ischemic penumbra, Stroke, 12, 723–725.CrossRefGoogle Scholar
  78. 78.
    Becker, N. H. (1961) The cytochemistry of anoxic and anoxioischemic encephalopathy in rats. II. Alterations in neuronal mitochondria indentified by diphosphopyridine and triphosphopyridine nucleotide diaphorases, Am. J. Pathol., 38, 587–597.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Def Webster, H., and Ames, A. (1965) Reversible and irreversible changes in the fine structure of nervous tissue during oxygen and glucose deprivation, J. Cell Biol., 26, 885–909.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zeman, W. (1963) Histochemical and metabolic changes in brain tissue after hypoxaemia, in Selective Vulnerability of the Brain in Hypoxemia (Schade, J. P., and McMenemey, W. H., eds.) Blackwell Publishing Co, London, pp. 327–348.Google Scholar
  81. 81.
    Ozawa, K., Seta, K., Araki, H., and Handa, H. (1967) The effect of ischemia on mitochondrial metabolism, J. Biochem., 61, 512–514.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ozawa, K., Itada, N., Kuno, S., Seta, K., and Handa, H. (1966) Biochemical studies on brain swelling. II. Influence of brain swelling and ischemia on the formation of an endogenous inhibitor in mitochondria, Folia Psychiatr. Neurol. Jpn., 20, 73–84.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Schutz, H., Silverstein, P. R., Vapalahti, M., Bruce, D. A., Mela, L., and Langfitt, T. W. (1973) Brain mitochondrial function after ischemia and hypoxia. I. Ischemia induced by increased intracranial pressure, Arch. Neurol., 29, 408–416.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ljunggren, B., Schutz, H., and Siesjo, B. K. (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia, Brain Res., 73, 277–289, doi: 0006-8993(74)91049-X.CrossRefGoogle Scholar
  85. 85.
    Ginsberg, M. D., Mela, L., Wrobel-Kuhl, K., and Reivich, M. (1977) Mitochondrial metabolism following bilateral cerebral ischemia in the gerbil, Ann. Neurol., 1, 519–527, doi: Scholar
  86. 86.
    Rehncrona, S., Mela, L., and Siesjo, B. K. (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia, Stroke, 10, 437–446.CrossRefGoogle Scholar
  87. 87.
    Nordstrom, C. H., Rehncrona, S., and Siesjo, B. K. (1978) Effects of phenobarbital in cerebral ischemia. Part II: Restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after pronounced incomplete ischemia, Stroke, 9, 335–343.CrossRefGoogle Scholar
  88. 88.
    Sims, N. R., and Pulsinelli, W. A. (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat, J. Neurochem., 49, 1367–1374.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Sims, N. R. (1991) Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat, J. Neurochem., 56, 1836–1844.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Herculano-Houzel, S., Ribeiro, P., Campos, L., Valotta da Silva, A., Torres, L. B., Catania, K. C., and Kaas, J. H. (2011) Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs), Brain Behav. Evol., 78, 302–314, doi: Scholar
  91. 91.
    Panov, A., Orynbayeva, Z., Vavilin, V., and Lyakhovich, V. (2014) Fatty acids in energy metabolism of the central nervous system, Biomed. Res. Int., 2014, 472459, doi: Scholar
  92. 92.
    Tretter, L., Takacs, K., Hegedus, V., and Adam-Vizi, V. (2007) Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria, J. Neurochem., 100, 650–663.CrossRefPubMedGoogle Scholar
  93. 93.
    Kahl, A., Stepanova, A., Konrad, C., Anderson, C., Manfredi, G., Zhou, P., Iadecola, C., and Galkin, A. (2018) Critical role of flavin and glutathione in complex I-mediated bioenergetic failure in brain ischemia/reperfusion injury, Stroke, 49, 1223–1231, doi: Scholar
  94. 94.
    Linn, F., Paschen, W., Ophoff, B. G., and Hossmann, K. A. (1987) Mitochondrial respiration during recirculation after prolonged ischemia in cat brain, Exp. Neurol., 96, 321–333.CrossRefPubMedGoogle Scholar
  95. 95.
    Almeida, A., Allen, K. L., Bates, T. E., and Clark, J. B. (1995) Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain, J. Neurochem., 65, 1698–1703.CrossRefPubMedGoogle Scholar
  96. 96.
    Allen, K. L., Almeida, A., Bates, T. E., and Clark, J. B. (1995) Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischaemia, J. Neurochem., 64, 2222–2229.CrossRefPubMedGoogle Scholar
  97. 97.
    Yoshimoto, T., Kristian, T., Hu, B., Ouyang, Y. B., and Siesjo, B. K. (2002) Effect of NXY-059 on secondary mitochondrial dysfunction after transient focal ischemia; comparison with cyclosporin A, Brain Res., 932, 99–109.CrossRefPubMedGoogle Scholar
  98. 98.
    Tsukada, H., Ohba, H., Nishiyama, S., Kanazawa, M., Kakiuchi, T., and Harada, N. (2014) PET imaging of ischemia-induced impairment of mitochondrial complex I function in monkey brain, J. Cereb. Blood Flow Metab., 34, 708–714, doi: Scholar
  99. 99.
    Stepanova, A., Sosunov, S., Niatsetskaya, Z., Konrad, C., Starkov, A. A., Manfredi, G., Wittig, I., Ten, V., and Galkin, A. (2019) Redox-dependent loss of flavin by mitochondrial complex I in brain ischemia/reperfusion injury, Antioxid. Redox Signal., doi:
  100. 100.
    Rao, N. A., Felton, S. P., Huennekens, F. M., and Mackler, B. (1963) Flavin mononucleotide: the coenzyme of reduced diphosphopyridine nucleotide dehydrogenase, J. Biol. Chem., 238, 449–455.PubMedGoogle Scholar
  101. 101.
    Yoshida, S., Abe, K., Busto, R., Watson, B. D., Kogure, K., and Ginsberg, M. D. (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain, Brain Res., 245, 307–316.CrossRefPubMedGoogle Scholar
  102. 102.
    Deutsch, J., Kalderon, B., Purdon, A. D., and Rapoport, S. I. (2000) Evaluation of brain long-chain acylcarnitines during cerebral ischemia, Lipids, 35, 693–696.CrossRefPubMedGoogle Scholar
  103. 103.
    Nguyen, N. H., Gonzalez, S. V., and Hassel, B. (2007) Formation of glycerol from glucose in rat brain and cultured brain cells. Augmentation with kainate or ischemia, J. Neurochem., 101, 1694–1700, doi: Scholar
  104. 104.
    Massey, V. (1994) Activation of molecular oxygen by flavins and flavoproteins, J. Biol. Chem., 269, 22459–22462.PubMedGoogle Scholar
  105. 105.
    Gibson, Q. H., Massey, V., and Atherton, N. M. (1962) The nature of compounds present in mixtures of oxidized and reduced flavin mononucleotides, Biochem. J., 85, 369–383.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Barile, M., Brizio, C., Valenti, D., De Virgilio, C., and Passarella, S. (2000) The riboflavin/FAD cycle in rat liver mitochondria, Eur. J. Biochem., 267, 4888–4900.CrossRefPubMedGoogle Scholar
  107. 107.
    Sled, V. D., and Vinogradov, A. D. (1993) Reductive inactivation of the mitochondrial three subunit NADH dehydrogenase, Biochim. Biophys. Acta, 1143, 199–203.CrossRefPubMedGoogle Scholar
  108. 108.
    Gostimskaya, I. S., Grivennikova, V. G., Cecchini, G., and Vinogradov, A. D. (2007) Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH:ubiquinone oxidoreductase (complex I), FEBS Lett., 581, 5803–5806.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Holt, P. J., Efremov, R. G., Nakamaru-Ogiso, E., and Sazanov, L. A. (2016) Reversible FMN dissociation from Escherichia coli respiratory complex I, Biochim. Biophys. Acta, 1857, 1777–1785, doi: Scholar
  110. 110.
    Gariballa, S., and Ullegaddi, R. (2007) Riboflavin status in acute ischaemic stroke, Eur. J. Clin. Nutr., 61, 1237–1240, doi: Scholar
  111. 111.
    Da Silva-Candal, A., Perez-Diaz, A., Santamaria, M., Correa-Paz, C., Rodriguez-Yanez, M., Arda, A., Perez-Mato, M., Iglesias-Rey, R., Brea, J., Azuaje, J., Sotelo, E., Sobrino, T., Loza, M. I., Castillo, J., and Campos, F. (2018) Clinical validation of blood/brain glutamate grabbing in acute ischemic stroke, Ann. Neurol., 84, 260–273, doi: Scholar
  112. 112.
    Kalogeris, T., Bao, Y., and Korthuis, R. J. (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning, Redox Biol., 2, 702–714, doi: Scholar
  113. 113.
    Cao, W., Carney, J. M., Duchon, A., Floyd, R. A., and Chevion, M. (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain, Neurosci. Lett., 88, 233–238.CrossRefGoogle Scholar
  114. 114.
    Anderson, M. F., and Sims, N. R. (2002) The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions, J. Neurochem., 81, 541–549.CrossRefGoogle Scholar
  115. 115.
    Mizui, T., Kinouchi, H., and Chan, P. H. (1992) Depletion of brain glutathione by buthionine sulfoximine enhances cerebral ischemic injury in rats, Am. J. Physiol., 262, H313–317.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Folbergrova, J., Zhao, Q., Katsura, K., and Siesjo, B. K. (1995) N-tert-Butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia, Proc. Natl. Acad. Sci. USA, 92, 5057–5061.CrossRefGoogle Scholar
  117. 117.
    Khan, M., Sekhon, B., Jatana, M., Giri, S., Gilg, A. G., Sekhon, C., Singh, I., and Singh, A. K. (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke, J. Neurosci. Res., 76, 519–527, doi: Scholar
  118. 118.
    Anderson, M. F., Nilsson, M., Eriksson, P. S., and Sims, N. R. (2004) Glutathione monoethyl ester provides neuroprotection in a rat model of stroke, Neurosci. Lett., 354, 163–165.CrossRefGoogle Scholar
  119. 119.
    Prime, T. A., Blaikie, F. H., Evans, C., Nadtochiy, S. M., James, A. M., Dahm, C. C., Vitturi, D. A., Patel, R. P., Hiley, C. R., Abakumova, I., Requejo, R., Chouchani, E. T., Hurd, T. R., Garvey, J. F., Taylor, C. T., Brookes, P. S., Smith, R. A., and Murphy, M. P. (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury, Proc. Natl. Acad. Sci. USA, 106, 10764–10769.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Stepanova, A., Shurubor, Y., Valsecchi, F., Manfredi, G., and Galkin, A. (2016) Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart, Biochim. Biophys. Acta, 1857, 1561–1568, doi: Scholar
  121. 121.
    Kang, P. T., Chen, C. L., Lin, P., Zhang, L., Zweier, J. L., and Chen, Y. R. (2018) Mitochondrial complex I in the post-ischemic heart: reperfusion-mediated oxidative injury and protein cysteine sulfonation, J. Mol. Cell. Cardiol., 121, 190–204, doi: Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Division of Neonatology, Department of PediatricsColumbia University William Black Building, NYNew YorkUSA

Personalised recommendations