Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 11, pp 1403–1410 | Cite as

Na+-Translocating Ferredoxin:NAD+ Oxidoreductase Is a Component of Photosynthetic Electron Transport Chain in Green Sulfur Bacteria

  • Y. V. Bertsova
  • M. D. Mamedov
  • A. V. BogachevEmail author
Article

Abstract

Genomes of photoautotrophic organisms containing type I photosynthetic reaction center were searched for the rnf genes encoding Na+-translocating ferredoxin:NAD+ oxidoreductase (RNF). These genes were absent in heliobacteria, cyanobacteria, algae, and plants; however, genomes of many green sulfur bacteria (especially marine ones) were found to contain the full rnf operon. Analysis of RNA isolated from the marine green sulfur bacterium Chlorobium phaeovibrioides revealed a high level of rnf expression. It was found that the activity of Na+-dependent flavodoxin:NAD+ oxidoreductase detected in the membrane fraction of Chl. phaeovibrioides was absent in the membrane fraction of the freshwater green sulfur bacterium Chlorobaculum limnaeum, which is closely related to Chl. phaeovibrioides but whose genome lacks the rnf genes. Illumination of the membrane fraction of Chl. phaeovibrioides but not of Cba. limnaeum resulted in the light-induced NAD+ reduction. Based on the obtained data, we concluded that in some green sulfur bacteria, RNF may be involved in the NADH formation that should increase the efficiency of light energy conservation in these microorganisms and can serve as the first example of the use of Na+ energetics in photosynthetic electron transport chains.

Keywords

Na+-translocating ferredoxin:NAD+ oxidoreductase transmembrane sodium transport green sulfur bacteria non-cyclic photosynthetic electron transport chain 

Abbriviation

Fd, Fdox, Fdred

ferredoxin and its oxidized and reduced forms, respectively

Fld, Fldox, Fldsq, Fldred

flavodoxin and its oxidized, semiquinone, and fully reduced forms, respectively

FNO

Fldred:NAD+ oxidoreductase

FNR

water-soluble ferredoxin-NAD(P)+ reductase

PFOR

pyruvate:ferredoxin (flavodoxin) oxidoreductase

RNF

Na+-translocating ferredoxin:NAD+ oxidoreductase

RT-qPCR

reverse transcription/quantitative polymerase chain reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to Dr. O. I. Keppen and Prof. R. N. Ivanovsky for kindly providing Cba. limnaeum cells and helpful discussions and to Dr. V. A. Kostyrko for valuable insights.

Funding

This work was supported by the Russian Science Foundation (project 19-14-00063).

References

  1. 1.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Principles of Bioenergetics, Springer Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
  2. 2.
    Dimroth, P., Jockel, P., and Schmid, M. (2001) Coupling mechanism of the oxaloacetate decarboxylase Na+ pump, Biochim. Biophys. Acta, 1505, 1–14; doi:  https://doi.org/10.1016/S0005-2728(00)00272-3.CrossRefGoogle Scholar
  3. 3.
    Unemoto, T., and Hayashi, M. (1979) NADH:quinone oxidoreductase as a site of Na+-dependent activation in the respiratory chain of marine Vibrio alginolyticus, J. Biochem., 85, 1461–1467.CrossRefGoogle Scholar
  4. 4.
    Verkhovsky, M. I., and Bogachev, A. V. (2010) Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump, Biochim. Biophys. Acta, 1797, 738–746; doi:  https://doi.org/10.1016/j.bbabio.2009.12.020.CrossRefGoogle Scholar
  5. 5.
    Gottschalk, G., and Thauer, R. K. (2001) The Na+-translocating methyltransferase complex from methanogenic archaea, Biochim. Biophys. Acta, 1505, 28–36; doi:  https://doi.org/10.1016/S0005-2728(00)00274-7.CrossRefGoogle Scholar
  6. 6.
    Heefner, D. L., and Harold, F. M. (1982) ATP-driven sodium pump in Streptococcus faecalis, Proc. Natl. Acad. Sci. USA, 79, 2798–2802; doi:  https://doi.org/10.1073/pnas.79.9.2798.CrossRefGoogle Scholar
  7. 7.
    Kluge, C., Laubinger, W., and Dimroth, P. (1992) The Na+-translocating ATPase of Propionigenium modestum, Biochem. Soc. Trans., 20, 572–577; doi:  https://doi.org/10.1042/bst0200572.CrossRefGoogle Scholar
  8. 8.
    Muntyan, M. S., Cherepanov, D. A., Malinen, A. M., Bloch, D. A., Sorokin, D. Y., Severina, I. I., Ivashina, T. V., Lahti, R., Muyzer, G., and Skulachev, V. P. (2015) Cytochrome cbb 3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase, Proc. Natl. Acad. Sci. USA, 112, 7695–7700; doi:  https://doi.org/10.1073/pnas.1417071112.CrossRefGoogle Scholar
  9. 9.
    Malinen, A. M., Belogurov, G. A., Baykov, A. A., and Lahti, R. (2007) Na+-pyrophosphatase: a novel primary sodium pump, Biochemistry, 46, 8872–8878; doi:  https://doi.org/10.1021/bi700564b.CrossRefGoogle Scholar
  10. 10.
    Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K., and Kandori, H. (2013) A light-driven sodium ion pump in marine bacteria, Nat. Commun., 4, 1678; doi:  https://doi.org/10.1038/ncomms2689.CrossRefGoogle Scholar
  11. 11.
    Skulachev, V. P. (1989) The sodium cycle: a novel type of bacterial energetics, J. Bioenerg. Biomembr., 21, 635–647; doi:  https://doi.org/10.1007/BF00762683.CrossRefGoogle Scholar
  12. 12.
    Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of the sodium energetics: may the sodium-motive force be with you, Biochim. Biophys. Acta, 1777, 985–992; doi:  https://doi.org/10.1016/j.bbabio.2008.04.028.CrossRefGoogle Scholar
  13. 13.
    Carrillo, N., and Ceccarelli, E. A. (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism, Eur. J. Biochem., 270, 1900–1915; doi:  https://doi.org/10.1046/j.1432-1033.2003.03566.x.CrossRefGoogle Scholar
  14. 14.
    Seo, D., and Sakurai, H. (2002) Purification and characterization of ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobium tepidum, Biochim. Biophys. Acta, 1597, 123–132; doi:  https://doi.org/10.1016/S0167-4838(02)00269-8.CrossRefGoogle Scholar
  15. 15.
    Schmehl, M., Jahn, A., Meyer zu Vilsendorf, A., Hennecke, S., Masepohl, B., Schuppler, M., Marxer, M., Oelze, J., and Klipp, W. (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase, Mol. Gen. Genet., 241, 602–615; doi:  https://doi.org/10.1007/BF00279903.CrossRefGoogle Scholar
  16. 16.
    Westphal, L., Wiechmann, A., Baker, J., Minton, N. P., and Muller, V. (2018) The Rnf complex is an energy-coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii, J. Bacteriol., 200, e00357–18; doi:  https://doi.org/10.1128/JB.00357-18.CrossRefGoogle Scholar
  17. 17.
    Biegel, E., Schmidt, S., Gonzalez, J. M., and Muller, V. (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes, Cell. Mol. Life Sci., 68, 613–634; doi:  https://doi.org/10.1007/s00018-010-0555-8.CrossRefGoogle Scholar
  18. 18.
    Müller, V., Imkamp, F., Biegel, E., Schmidt, S., and Dilling, S. (2008) Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii. A novel potential coupling site in acetogens, Ann. N. Y. Acad. Sci., 1125, 137–146; doi:  https://doi.org/10.1196/annals.1419.011.CrossRefGoogle Scholar
  19. 19.
    Chowdhury, N. P., Klomann, K., Seubert, A., and Buckel, W. (2016) Reduction of flavodoxin by electron bifurcation and sodium ion-dependent re-oxidation by NAD+ catalyzed by ferredoxin-NAD+ reductase (Rnf), J. Biol. Chem., 291, 11993–12002; doi:  https://doi.org/10.1074/jbc.M116.726299.CrossRefGoogle Scholar
  20. 20.
    Curatti, L., Brown, C. S., Ludden, P. W., and Rubio, L. M. (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii, Proc. Natl. Acad. Sci. USA, 102, 6291–6296; doi:  https://doi.org/10.1073/pnas.0501216102.CrossRefGoogle Scholar
  21. 21.
    Koo, M. S., Lee, J. H., Rah, S. Y., Yeo, W. S., Lee, J. W., Lee, K. L., Koh, Y. S., Kang, S. O., and Roe, J. H. (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli, EMBO J., 22, 2614–2622; doi:  https://doi.org/10.1093/emboj/cdg252.CrossRefGoogle Scholar
  22. 22.
    Malik, K. A. (1983) A modified method for the cultivation of phototrophic bacteria, J. Microbiol. Methods, 1, 343–352.CrossRefGoogle Scholar
  23. 23.
    Bertsova, Y. V., Kulik, L. V., Mamedov, M. D., Baykov, A. A., and Bogachev, A. V. (2019) Flavodoxin with an air-stable flavin semiquinone in a green sulfur bacterium, Photosynth. Res., in press; doi:  https://doi.org/10.1007/s11120-019-00658-1.CrossRefGoogle Scholar
  24. 24.
    Klughammer, C., Hager, C., Padan, E., Schutz, M., Schreiber, U., Shahak, Y., and Hauska, G. (1995) Reduction of cytochromes with menaquinol and sulfide in membranes from green sulfur bacteria, Photosynth. Res., 43, 27–34; doi:  https://doi.org/10.1007/BF00029459.CrossRefGoogle Scholar
  25. 25.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid, Anal. Biochem., 150, 76–85; doi:  https://doi.org/10.1016/0003-2697(85)90442-7.CrossRefGoogle Scholar
  26. 26.
    Bertsova, Y. V., Fadeeva, M. S., Kostyrko, V. A., Serebryakova, M. V., Baykov, A. A., and Bogachev, A. V. (2013) Alternative pyrimidine biosynthesis protein ApbE is a flavin transferase catalyzing covalent attachment of FMN to a threonine residue in bacterial flavoproteins, J. Biol. Chem., 288, 14276–14286; doi:  https://doi.org/10.1074/jbc.M113.455402.CrossRefGoogle Scholar
  27. 27.
    Deka, R. K., Brautigam, C. A., Liu, W. Z., Tomchick, D. R., and Norgard, M. V. (2016) Molecular insights into the enzymatic diversity of flavin-trafficking protein (Ftp; formerly ApbE) in flavoprotein biogenesis in the bacterial periplasm, Microbiologyopen, 5, 21–38; doi:  https://doi.org/10.1002/mbo3.306.CrossRefGoogle Scholar
  28. 28.
    Bogachev, A. V., Baykov, A. A., and Bertsova, Y. V. (2018) Flavin transferase: the maturation factor of flavin-containing oxidoreductases, Biochem. Soc. Trans., 46, 1161–1169; doi:  https://doi.org/10.1042/BST20180524.CrossRefGoogle Scholar
  29. 29.
    Saer, R. G., and Blankenship, R. E. (2017) Light harvesting in phototrophic bacteria: structure and function, Biochem. J., 474, 2107–2131; doi:  https://doi.org/10.1042/BCJ20160753.CrossRefGoogle Scholar
  30. 30.
    Frigaard, N. U., Chew, A. G., Li, H., Maresca, J. A., and Bryant, D. A. (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence, Photosynth. Res., 78, 93–117; doi:  https://doi.org/10.1023/B:PRES.0000004310.96189.b4.CrossRefGoogle Scholar
  31. 31.
    Hauska, G., Schoedl, T., Remigy, H., and Tsiotis, G. (2001) The reaction center of green sulfur bacteria, Biochim. Biophys. Acta, 1507, 260–277; doi:  https://doi.org/10.1016/S0005-2728(01)00200-6.CrossRefGoogle Scholar
  32. 32.
    Buchanan, B. B., and Arnon, D. I. (1990) A reverse Krebs cycle in photosynthesis: consensus at last, Photosynth. Res., 24, 47–53; doi:  https://doi.org/10.1007/BF00032643.CrossRefGoogle Scholar
  33. 33.
    Yoon, K. S., Bobst, C., Hemann, C. F., Hille, R., and Tabita, F. R. (2001) Spectroscopic and functional properties of novel 2[4Fe-4S] cluster-containing ferredoxins from the green sulfur bacterium Chlorobium tepidum, J. Biol. Chem., 276, 44027–44036; doi:  https://doi.org/10.1074/jbc.M107852200.CrossRefGoogle Scholar
  34. 34.
    Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1997) The Na+/e stoichiometry of the Na+-motive NADH:quinone oxidoreductase in Vibrio alginolyticus, FEBS Lett., 409, 475–477; doi:  https://doi.org/10.1016/S0014-5793(97)00536-X.CrossRefGoogle Scholar
  35. 35.
    Kozuleva, M. A., and Ivanov, B. N. (2016) The mechanisms of oxygen reduction in the terminal reducing segment of the chloroplast photosynthetic electron transport chain, Plant Cell Physiol., 57, 1397–1404; doi:  https://doi.org/10.1093/pcp/pcw035.PubMedGoogle Scholar
  36. 36.
    Manske, A. K., Glaeser, J., Kuypers, M. M., and Overmann, J. (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea, Appl. Environ. Microbiol., 71, 8049–8060; doi:  https://doi.org/10.1128/AEM.71.12.8049-8060.2005.CrossRefGoogle Scholar
  37. 37.
    Gest, H., and Favinger, J. L. (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll, Arch. Microbiol., 136, 11–16; doi: https://doi.org/10.1007/BF00415602.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Y. V. Bertsova
    • 1
  • M. D. Mamedov
    • 1
  • A. V. Bogachev
    • 1
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations