Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 11, pp 1390–1402 | Cite as

Features of Organization and Mechanism of Catalysis of Two Families of Terminal Oxidases: Heme-Copper and bd-Type

  • V. B. BorisovEmail author
  • S. A. Siletsky
Review

Abstract

Terminal oxidases of aerobic respiratory chains catalyze the transfer of electrons from the respiratory substrate, cytochrome c or quinol, to O2 with the formation of two H2O molecules. There are two known families of these membrane oxidoreductases: heme-copper oxidase superfamily and bd-type oxidase family (cytochromes bd) found in prokaryotes only. The redox reaction catalyzed by these enzymes is coupled to the generation of proton motive force used by the cell to synthesize ATP and to perform other useful work. Due to the presence of the proton pump, heme-copper oxidases create the membrane potential with a greater energy efficiency than cytochromes bd. The latter, however, play an important physiological role that enables bacteria, including pathogenic ones, to survive and reproduce under adverse environmental conditions. This review discusses the features of organization and molecular mechanisms of functioning of terminal oxidases from these two families in the light of recent experimental data.

Keywords

respiratory chain terminal oxidase cytochrome oxidase cytochrome bd heme catalytic cycle oxygen intermediates membrane potential proton pump 

Abbriviation

BNC

binuclear center

COX

cytochrome oxidase

HCO

heme-copper oxidase

PLS

proton-loading site

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to V. P. Skulachev, A. A. Konstantinov, and A. D. Vinogradov for their interest in this work, useful discussion, and critical remarks.

Funding

This work was supported by the Russian Science Foundation (project 19-14-00063).

References

  1. 1.
    Hemp, J., and Gennis, R. B. (2008) Diversity of the hemecopper superfamily in archaea: insights from genomics and structural modeling, Results Probl. Cell Differ., 45, 1–31; doi:  https://doi.org/10.1007/400_2007_046.PubMedCrossRefGoogle Scholar
  2. 2.
    Siletsky, S. A. (2013) Steps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase, Front. Biosci., 18, 36–57; doi:  https://doi.org/10.2741/4086.CrossRefGoogle Scholar
  3. 3.
    Wikstrom, M. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria, Nature, 266, 271–273; doi:  https://doi.org/10.1038/266271a0.PubMedCrossRefGoogle Scholar
  4. 4.
    Ter Beek, J., Krause, N., and Adelroth, P. (2016) Investigating the proton donor in the NO reductase from Paracoccus denitrificans, PLoS One, 11, e0152745; doi:  https://doi.org/10.1371/journal.pone.0152745.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pereira, M. M., and Teixeira, M. (2004) Proton pathways, ligand binding and dynamics of the catalytic site in hemecopper oxygen reductases: a comparison between the three families, Biochim. Biophys. Acta, 1655, 340–346; doi:  https://doi.org/10.1016/j.bbabio.2003.06.003.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å, Science, 272, 1136–1144; doi:  https://doi.org/10.1126/science.272.5265.1136.PubMedCrossRefGoogle Scholar
  7. 7.
    Koepke, J., Olkhova, E., Angerer, H., Muller, H., Peng, G., and Michel, H. (2009) High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: new insights into the active site and the proton transfer pathways, Biochim. Biophys. Acta, 1787, 635–645; doi:  https://doi.org/10.1016/j.bbabio.2009.04.003.PubMedCrossRefGoogle Scholar
  8. 8.
    Svensson-Ek, M., Abramson, J., Larsson, G., Tornroth, S., Brzezinski, P., and Iwata, S. (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides, J. Mol. Biol., 321, 329–339; doi:  https://doi.org/10.1016/S0022-2836(02)00619-8.PubMedCrossRefGoogle Scholar
  9. 9.
    Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S., and Wikstrom, M. (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site, Nat. Struct. Biol., 7, 910–917; doi:  https://doi.org/10.1038/82824.PubMedCrossRefGoogle Scholar
  10. 10.
    Letts, J. A., Fiedorczuk, K., and Sazanov, L. A. (2016) The architecture of respiratory supercomplexes, Nature, 537, 644–648; doi:  https://doi.org/10.1038/nature19774.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936–1989; doi:  https://doi.org/10.1021/cr500266a.PubMedCrossRefGoogle Scholar
  12. 12.
    Wikstrom, M., Sharma, V., Kaila, V. R., Hosler, J. P., and Hummer, G. (2015) New perspectives on proton pumping in cellular respiration, Chem. Rev., 115, 2196–2221; doi:  https://doi.org/10.1021/cr500448t.PubMedCrossRefGoogle Scholar
  13. 13.
    Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085–9090; doi:  https://doi.org/10.1073/pnas.94.17.9085.PubMedCrossRefGoogle Scholar
  14. 14.
    Siletsky, S. A., Pawate, A. S., Weiss, K., Gennis, R. B., and Konstantinov, A. A. (2004) Transmembrane charge separation during the ferryl-oxo→oxidized transition in a non-pumping mutant of cytochrome c oxidase, J. Biol. Chem., 279, 52558–52565; doi:  https://doi.org/10.1074/jbc.M407549200.PubMedCrossRefGoogle Scholar
  15. 15.
    Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps couples to conversion of cytochrome c oxidase from the peroxy- to the ferryl-oxo state, Biochemistry, 38, 4853–4861; doi:  https://doi.org/10.1021/bi982614a.PubMedCrossRefGoogle Scholar
  16. 16.
    Belevich, I., Bloch, D. A., Belevich, N., Wikstrom, M., and Verkhovsky, M. I. (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time, Proc. Natl. Acad. Sci. USA, 104, 2685–2690; doi:  https://doi.org/10.1073/pnas.0608794104.PubMedCrossRefGoogle Scholar
  17. 17.
    Siletsky, S. A., Belevich, I., Wikstrom, M., Soulimane, T., and Verkhovsky, M. I. (2009) Time-resolved OH→EH transition of the aberrant ba 3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1787, 201–205; doi:  https://doi.org/10.1016/j.bbabio.2008.12.020.PubMedCrossRefGoogle Scholar
  18. 18.
    Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Verkhovsky, M. I. (2011) Time-resolved single-turnover of caa 3 oxidase from Thermus thermophilus. Fifth electron of the fully reduced enzyme converts OH into EH state, Biochim. Biophys. Acta, 1807, 1162–1169; doi:  https://doi.org/10.1016/j.bbabio.2011.05.006.PubMedCrossRefGoogle Scholar
  19. 19.
    Siletsky, S. A., Belevich, I., Soulimane, T., Verkhovsky, M. I., and Wikstrom, M. (2013) The fifth electron in the fully reduced caa 3 from Thermus thermophilus is competent in proton pumping, Biochim. Biophys. Acta, 1827, 1–9; doi:  https://doi.org/10.1016/j.bbabio.2012.09.013.PubMedCrossRefGoogle Scholar
  20. 20.
    Siletsky, S. A., Belevich, I., Belevich, N. P., Soulimane, T., and Wikstrom, M. (2017) Time-resolved generation of membrane potential by ba 3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states, Biochim. Biophys. Acta, 1858, 915–926; doi:  https://doi.org/10.1016/j.bbabio.2017.08.007.CrossRefGoogle Scholar
  21. 21.
    Sharma, V., Karlin, K. D., and Wikstrom, M. (2013) Computational study of the activated OH state in the catalytic mechanism of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 110, 16844–16849; doi:  https://doi.org/10.1073/pnas.1220379110.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zaslavsky, D. L., Smirnova, I. A., Siletsky, S. A., Kaulen, A. D., Millett, F., and Konstantinov, A. A. (1995) Rapid kinetics of membrane potential generation by cytochrome c oxidase with the photoactive Ru(II)-tris-bipyridyl derivative of cytochrome c as electron donor, FEBS Lett., 359, 27–30; doi:  https://doi.org/10.1016/0014-5793(94)01443-5.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Siletskiy, S., Soulimane, T., Azarkina, N., Vygodina, T. V., Buse, G., Kaulen, A., and Konstantinov, A. (1999) Time-resolved generation of a membrane potential by ba 3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear center, FEBS Lett., 457, 98–102; doi:  https://doi.org/10.1016/S0014-5793(99)01019-4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Siletsky, S. A., Kaulen, A. D., and Konstantinov, A. A. (1997) Electrogenic events associated with peroxy- to ferryoxo state transition in cytochrome c oxidase, Eur. Biophys. J., 26, 98.Google Scholar
  25. 25.
    Siletsky, S. A., Han, D., Brand, S., Morgan, J. E., Fabian, M., Geren, L., Millett, F., Durham, B., Konstantinov, A. A., and Gennis, R. B. (2006) Single-electron photoreduction of the PM intermediate of cytochrome c oxidase, Biochim. Biophys. Acta, 1757, 1122–1132; doi:  https://doi.org/10.1016/j.bbabio.2006.07.003.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lee, A., Kirichenko, A., Vygodina, T., Siletsky, S. A., Das, T. K., Rousseau, D. L., Gennis, R., and Konstantinov, A. A. (2002) Ca2+-binding site in Rhodobacter sphaeroides cytochrome c oxidase, Biochemistry, 41, 8886–8898; doi:  https://doi.org/10.1021/bi020183x.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kuznetsova, S. S., Azarkina, N. V., Vygodina, T. V., Siletsky, S. A., and Konstantinov, A. A. (2005) Zinc ions as cytochrome c oxidase inhibitors: two sites of action, Biochemistry (Moscow), 70, 128–136.CrossRefGoogle Scholar
  28. 28.
    Siletsky, S. A., Zhu, J., Gennis, R. B., and Konstantinov, A. A. (2010) Partial steps of charge translocation in the non-pumping N139L mutant of Rhodobacter sphaeroides cytochrome c oxidase with a blocked D-channel, Biochemistry, 49, 3060–3073; doi:  https://doi.org/10.1021/bi901719e.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321–324; doi:  https://doi.org/10.1038/249321a0.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mamedov, M. D., Tyunyatkina, A. A., Siletsky, S. A., and Semenov, A. Y. (2006) Voltage changes involving photosystem II quinone-iron complex turnover, Eur. Biophys. J., 35, 647–654; doi:  https://doi.org/10.1007/s00249-006-0069-3.PubMedCrossRefGoogle Scholar
  31. 31.
    Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta, 1857, 1741–1750; doi:  https://doi.org/10.1016/j.bbabio.2016.08.004.PubMedCrossRefGoogle Scholar
  32. 32.
    Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2019) Elimination of proton donor strongly affects directionality and efficiency of proton transport in ESR, a light-driven proton pump from Exiguobacterium sibiricum, Biochim. Biophys. Acta Bioenerg., 1860, 1–11; doi:  https://doi.org/10.1016/j.bbabio.2018.09.365.PubMedCrossRefGoogle Scholar
  33. 33.
    Verkhovsky, M. I., Jasaitis, A., Verkhovskaya, M. L., Morgan, J. E., and Wikstrom, M. (1999) Proton translocation by cytochrome c oxidase, Nature, 400, 480–483; doi:  https://doi.org/10.1038/22813.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ruitenberg, M., Kannt, A., Bamberg, E., Fendler, K., and Michel, H. (2002) Reduction of cytochrome c oxidase by a second electron leads to proton translocation, Nature, 417, 99–102; doi:  https://doi.org/10.1038/416099a.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kaila, V. R., Sharma, V., and Wikstrom, M. (2011) The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase, Biochim. Biophys. Acta, 1807, 80–84; doi:  https://doi.org/10.1016/j.bbabio.2010.08.014.PubMedCrossRefGoogle Scholar
  36. 36.
    Capitanio, N., Palese, L. L., Capitanio, G., Martino, P. L., Richter, O. M., Ludwig, B., and Papa, S. (2012) Allosteric interactions and proton conducting pathways in proton pumping aa 3 oxidases: heme a as a key coupling element, Biochim. Biophys. Acta, 1817, 558–566; doi:  https://doi.org/10.1016/j.bbabio.2011.11.003.PubMedCrossRefGoogle Scholar
  37. 37.
    Lu, J., and Gunner, M. R. (2014) Characterizing the proton loading site in cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 111, 12414–12419; doi:  https://doi.org/10.1073/pnas.1407187111.PubMedCrossRefGoogle Scholar
  38. 38.
    De Vries, S. (2008) The role of the conserved tryptophan 272 of the Paracoccus denitrificans cytochrome c oxidase in proton pumping, Biochim. Biophys. Acta, 1777, 925–928; doi:  https://doi.org/10.1016/j.bbabio.2008.05.008.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Brzezinski, P., and Larsson, G. (2003) Redox-driven proton pumping by heme-copper oxidases, Biochim. Biophys. Acta, 1605, 1–13; doi:  https://doi.org/10.1016/S0005-2728(03)00079-3.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Arnold, S. (2012) The power of life — cytochrome c oxidase takes center stage in metabolic control, cell signaling and survival, Mitochondrion, 12, 46–56; doi:  https://doi.org/10.1016/j.mito.2011.05.003.PubMedCrossRefGoogle Scholar
  41. 41.
    Siletsky, S. A., and Konstantinov, A. A. (2012) Cytochrome c oxidase: charge translocation coupled to single-electron partial steps of the catalytic cycle, Biochim. Biophys. Acta, 1817, 476–488; doi:  https://doi.org/10.1016/j.bbabio.2011.08.003.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379–1426; doi:  https://doi.org/10.2741/4550.CrossRefGoogle Scholar
  43. 43.
    Rich, P. R., and Marechal, A. (2013) Functions of the hydrophilic channels in protonmotive cytochrome c oxidase, J. R. Soc. Interface, 10, 20130183; doi:  https://doi.org/10.1098/rsif.2013.0183.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sharma, V., Jambrina, P. G., Kaukonen, M., Rosta, E., and Rich, P. R. (2017) Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations, Proc. Natl. Acad. Sci. USA, 114, E10339–E10348; doi:  https://doi.org/10.1073/pnas.1708628114.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Rauhamaki, V., Bloch, D. A., and Wikstrom, M. (2012) Mechanistic stoichiometry of proton translocation by cytochrome cbb 3, Proc. Natl. Acad. Sci. USA, 109, 7286–7291; doi:  https://doi.org/10.1073/pnas.1202151109.PubMedCrossRefGoogle Scholar
  46. 46.
    Siletsky, S. A., Belevich, I., Jasaitis, A., Konstantinov, A. A., Wikstrom, M., Soulimane, T., and Verkhovsky, M. I. (2007) Time-resolved single-turnover of ba 3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1767, 1383–1392; doi:  https://doi.org/10.1016/j.bbabio.2007.09.010.PubMedCrossRefGoogle Scholar
  47. 47.
    Kannt, A., Soulimane, T., Buse, G., Becker, A., Bamberg, E., and Michel, H. (1998) Electrical current generation and proton pumping catalyzed by the ba 3-type cytochrome c oxidase from Thermus thermophilus, FEBS Lett., 434, 17–22; doi:  https://doi.org/10.1016/S0014-5793(98)00942-9.PubMedCrossRefGoogle Scholar
  48. 48.
    Rauhamaki, V., and Wikstrom, M. (2014) The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A, Biochim. Biophys. Acta, 1837, 999–1003; doi:  https://doi.org/10.1016/j.bbabio.2014.02.020.PubMedCrossRefGoogle Scholar
  49. 49.
    Rauhamaki, V., Bloch, D. A., Verkhovsky, M. I., and Wikstrom, M. (2009) Active site of cytochrome cbb 3, J. Biol. Chem., 284, 11301–11308; doi:  https://doi.org/10.1074/jbc.M808839200.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Forte, E., Urbani, A., Saraste, M., Sarti, P., Brunori, M., and Giuffre, A. (2001) The cytochrome cbb 3 from Pseudomonas stutzeri displays nitric oxide reductase activity, Eur. J. Biochem., 268, 6486–6491; doi:  https://doi.org/10.1046/j.0014-2956.2001.02597.x.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171–234; doi:  https://doi.org/10.1016/bs.ampbs.2017.05.002.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565–574.Google Scholar
  53. 53.
    Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398–1413; doi:  https://doi.org/10.1016/j.bbabio.2011.06.016.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Safarian, S., Rajendran, C., Muller, H., Preu, J., Langer, J. D., Ovchinnikov, S., Hirose, T., Kusumoto, T., Sakamoto, J., and Michel, H. (2016) Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases, Science, 352, 583–586; doi:  https://doi.org/10.1126/science.aaf2477.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287–1291; doi:  https://doi.org/10.1016/j.febslet.2009.03.022.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bertsova, Y. V., Bogachev, A. V., and Skulachev, V. P. (1997) Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii, FEBS Lett., 414, 369–372; doi:  https://doi.org/10.1016/S0014-5793(97)01047-8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800–13809; doi:  https://doi.org/10.1021/bi001165n.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657–3662; doi:  https://doi.org/10.1073/pnas.0405683102.PubMedCrossRefGoogle Scholar
  59. 59.
    Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514–28519; doi:  https://doi.org/10.1074/jbc.M705562200.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b 595/heme d active site, Biochemistry, 47, 7907–7914; doi:  https://doi.org/10.1021/bi800435a.PubMedCrossRefGoogle Scholar
  61. 61.
    Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320–17324; doi:  https://doi.org/10.1073/pnas.1108217108.PubMedCrossRefGoogle Scholar
  62. 62.
    Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265–269.PubMedGoogle Scholar
  63. 63.
    Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622–629; doi:  https://doi.org/10.1016/j.febslet.2011.07.035.PubMedCrossRefGoogle Scholar
  64. 64.
    Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178–1187; doi:  https://doi.org/10.1016/j.bbabio.2014.01.016.PubMedCrossRefGoogle Scholar
  65. 65.
    Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffre, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565–575; doi:  https://doi.org/10.1134/S0006297915050077.CrossRefGoogle Scholar
  66. 66.
    Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437–443.Google Scholar
  67. 67.
    Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567–4570; doi:  https://doi.org/10.1016/j.febslet.2005.07.011.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177–11184; doi:  https://doi.org/10.1021/bi700862u.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Avetisyan, A. V., Bogachev, A. V., Murtasina, R. A., and Skulachev, V. P. (1992) Involvement of a d-type oxidase in the Na+-motive respiratory chain of Escherichia coli growing under low ΔμH+ conditions, FEBS Lett., 306, 199–202; doi:  https://doi.org/10.1016/0014-5793(92)80999-W.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., Vicente, J. B., Sarti, P., and Giuffre, A. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788; doi:  https://doi.org/10.1038/srep23788.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffre, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201–204; doi:  https://doi.org/10.1016/j.febslet.2004.09.013.PubMedCrossRefGoogle Scholar
  72. 72.
    Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823–4826; doi:  https://doi.org/10.1016/j.febslet.2006.07.072.PubMedCrossRefGoogle Scholar
  73. 73.
    Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97–102; doi:  https://doi.org/10.1016/j.bbrc.2007.01.118.PubMedCrossRefGoogle Scholar
  74. 74.
    Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185–1187; doi:  https://doi.org/10.1016/j.jinorgbio.2009.06.002.PubMedCrossRefGoogle Scholar
  75. 75.
    Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428–436; doi:  https://doi.org/10.1134/S000629791004005X.CrossRefGoogle Scholar
  76. 76.
    Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214–2218; doi:  https://doi.org/10.1016/j.febslet.2013.05.047.PubMedCrossRefGoogle Scholar
  77. 77.
    Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182–188; doi:  https://doi.org/10.1016/j.bbabio.2014.10.006.PubMedCrossRefGoogle Scholar
  78. 78.
    Hoeser, J., Hong, S., Gehmann, G., Gennis, R. B., and Friedrich, T. (2014) Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett., 588, 1537–1541; doi:  https://doi.org/10.1016/j.febslet.2014.03.036.PubMedCrossRefGoogle Scholar
  79. 79.
    Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740–750; doi:  https://doi.org/10.1021/bi981908t.PubMedCrossRefGoogle Scholar
  80. 80.
    Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087–2094; doi:  https://doi.org/10.1016/j.bbabio.2012.06.009.PubMedCrossRefGoogle Scholar
  81. 81.
    Leonova, M. M., Fufina, T. Y., Vasilieva, L. G., and Shuvalov, V. A. (2011) Structure-function investigations of bacterial photosynthetic reaction centers, Biochemistry (Moscow), 76, 1465–1483; doi:  https://doi.org/10.1134/S0006297911130074.CrossRefGoogle Scholar
  82. 82.
    Murali, R., and Gennis, R. B. (2018) Functional importance of glutamate-445 and glutamate-99 in proton-coupled electron transfer during oxygen reduction by cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1859, 577–590; doi:  https://doi.org/10.1016/j.bbabio.2018.04.012.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6; doi:  https://doi.org/10.1128/ecosalplus.ESP-0012-2015.
  84. 84.
    Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006–01013; doi:  https://doi.org/10.1128/mBio.01006-13.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b 595 reacts with CO, J. Biol. Chem., 276, 22095–22099; doi:  https://doi.org/10.1074/jbc.M011542200.PubMedCrossRefGoogle Scholar
  86. 86.
    Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65–67; doi:  https://doi.org/10.1016/j.jinorgbio.2012.09.016.PubMedCrossRefGoogle Scholar
  87. 87.
    Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354–1366; doi:  https://doi.org/10.1134/S000629791711013X.CrossRefGoogle Scholar
  88. 88.
    Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b 595 is 10 Å, Biochemistry, 47, 1752–1759; doi:  https://doi.org/10.1021/bi701884g.PubMedCrossRefGoogle Scholar
  89. 89.
    Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin hemes in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186; doi:  https://doi.org/10.1371/journal.pone.0155186.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617; doi:  https://doi.org/10.1371/journal.pone.0095617.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975–982.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231–239.Google Scholar
  93. 93.
    Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: a di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554–1559; doi:  https://doi.org/10.1073/pnas.030528197.PubMedCrossRefGoogle Scholar
  94. 94.
    Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b 595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654–1662; doi:  https://doi.org/10.1021/bi0158019.PubMedCrossRefGoogle Scholar
  95. 95.
    Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14–22; doi:  https://doi.org/10.1134/S0006297908010021.CrossRefGoogle Scholar
  96. 96.
    Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657–1664; doi:  https://doi.org/10.1016/j.bbabio.2010.05.010.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Paulus, A., Rossius, S. G., Dijk, M., and de Vries, S. (2012) Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species, J. Biol. Chem., 287, 8830–8838; doi:  https://doi.org/10.1074/jbc.M111.333542.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl- and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503–509; doi:  https://doi.org/10.1016/j.bbabio.2011.02.007.PubMedCrossRefGoogle Scholar
  99. 99.
    Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705–3709; doi:  https://doi.org/10.1016/j.febslet.2008.09.038.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810–32817; doi:  https://doi.org/10.1074/jbc.274.46.32810.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations