Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 11, pp 1359–1374 | Cite as

Ubiquitin Subproteome of Brain Mitochondria and Its Changes Induced by Experimental Parkinsonism and Action of Neuroprotectors

  • O. A. Buneeva
  • M. V. MedvedevaEmail author
  • A. T. Kopylov
  • A. E. Medvedev
Review

Abstract

The review summarizes the data of our research and published studies on the ubiquitination of brain mitochondrial proteins and its changes during the development of experimental parkinsonism and administration of the neuroprotector isatin (indole-2,3-dione) with special attention to the mitochondrial ubiquitin-conjugating system and location of ubiquitinated proteins in these organelles. Incubation of brain mitochondrial fraction with biotinylated ubiquitin in vitro resulted in the incorporation of biotinylated ubiquitin in both mitochondrial and mitochondria-associated proteins. According to the interactome analysis, the identified non-ubiquitinated proteins are able to form tight complexes with ubiquitinated proteins or their partners and components of mitochondrial membranes, in which interactions of ubiquitin chains with the ubiquitin-binding protein domains play an important role. The studies of endogenous ubiquitination in the total brain mitochondrial fraction of C57Bl mice performed in different laboratories have shown that mitochondrial proteins represent about 30% of all ubiquitinated proteins. However, comparison of brain subproteomes of mitochondrial ubiquitinated proteins reported in the literature revealed significant differences both in their composition and involvement of identified ubiquitinated proteins in biological processes listed in the Gene Ontology database. The development of experimental parkinsonism in C57Bl mice induced by a single-dose administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) resulted in a decrease in the total number of mitochondrial ubiquitinated proteins and increase in the number of oxidized mitochondrial proteins containing the ubiquitin signature (K-ε-GG). Comparison of ubiquitinated proteins associated with the mouse brain mitochondrial fraction and mouse brain mitochondrial proteins bound to the proteasome ubiquitin receptor (Rpn10 subunit) did not reveal any common proteins. This suggests that ubiquitination of brain mitochondrial proteins is not directly related to their degradation in the proteasomes. Proteomic profiling of brain isatin-binding proteins identified enzymes involved in the ubiquitin-conjugating system functioning. Mapping of the identified isatin-binding proteins to known metabolic pathways indicates their participation in the parkin (E3 ubiquitin ligase)-associated pathway (CH000000947). The functional links involving brain mitochondrial ubiquitinated proteins were found only in the group of animals with the MPTP-induced parkinsonism, but not in animals treated with MPTP/isatin or isatin only. This suggests that the neuroprotective effect of isatin may be associated with the impaired functional relationships of proteins targeted to subsequent degradation.

Keywords

protein ubiquitination brain mitochondria experimental Parkinsonism isatin neuroprotector subproteome interactome 

Abbriviation

GO

Gene Ontology database

MAO

monoamine oxidase

MPTP

neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PPI

protein—protein interaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

Analysis of literature data was supported by the Russian Foundation for Basic Research (project no. 19-015-00073), the interactome analysis using the STRING open-access software was performed within the framework of the Program of Fundamental Scientific Research of the State Academies of Sciences for 2013–2020.

Supplementary material

10541_2019_846_MOESM1_ESM.pdf (63 kb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    Hershko, A., and Ciechanover, A. (1998) The ubiquitin system, Annu. Rev. Biochem., 67, 425–479.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hershko, A., Ciechanover, A., and Varshavsky, A. (2000) Basic Medical Research Award. The ubiquitin system, Nat. Med., 6, 1073–1081.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Schwartz, A. L., and Ciechanover, A. (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology, Annu. Rev. Pharmacol. Toxicol., 49, 73–96, doi:  https://doi.org/10.1146/annurev.pharmtox.051208.165340.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Komander, D., and Rape, M. (2012) The ubiquitin code, Annu. Rev. Biochem., 81, 203–229.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Buneeva, O. A., and Medvedev, A. E. (2017) The role of atypical ubiquitination in cell regulation, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 11, 16–31.CrossRefGoogle Scholar
  6. 6.
    Goldknopf, I. L., and Busch, H. (1977) Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24, Proc. Natl. Acad. Sci. USA, 74, 864–868.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hershko, A., Ciechanover, A., Heller, H., Haas, A. L., and Rose, I. A. (1980) Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. USA, 77, 1783–1786.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zhuang, Z., and McCauley, R. (1989) Ubiquitin is involved in the in vitro insertion of monoamine oxidase B into mitochondrial outer membranes, J. Biol. Chem., 264, 14594–14596.Google Scholar
  9. 9.
    Zhuang, Z., Marks, B., and McCauley, R. (1992) The insertion of monoamine oxidase A into the outer membrane of rat liver mitochondria, J. Biol. Chem., 267, 591–596.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Raboy, B., Parag, H. A., and Kulka, R. G. (1986) Conjugation of [I]ubiquitin to cellular proteins in permeabilized mammalian cells: comparison of mitotic and interphase cells, EMBO J., 5, 863–869.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Magnani, M., Serafini, G., Antonelli, A., Malatesta, M., and Gazzanelli, G. (1991) Evidence for a particulate location of ubiquitin conjugates and ubiquitin-cojugating enzymes in rabbit brain, J. Biol. Chem., 266, 21018–21024.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hayashi, T., Takada, K., and Matsuda, M. (1992) Subcellular distribution of ubiquitin-protein conjugates in the hippocampus following transient ischemia, J. Neurosci. Res., 31, 561–564, doi:  https://doi.org/10.1002/jnr.490310321.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Medvedev, A. E., Kirkel, A. Z., Kamyshanskaya, N. S., and Gorkin, V. Z. (1993) Lipid peroxidation affects catalytic properties of rat liver mitochondrial monoamine oxidases and their sensitivity to proteolysis, Int. J. Biochem., 25, 1791–1799.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Buneeva, O. A., Medvedeva, M. V., and Medvedev, A. E. (1999) Incorporation of ubiquitin into rat brain mitochondria is accompanied by increased proteolytic digestibility of MAO, Neurobiology (Bp), 7, 257–261.Google Scholar
  15. 15.
    Buneeva, O. A., Medvedeva, M. V., and Medvedev, A. E. (2008) Ubiquitin causes selective increase in the sensitivity of rat brain mitochondrial monoamine oxidases to various proteases, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 2, 101–104.Google Scholar
  16. 16.
    Buneeva, O. A., Medvedeva, M. V., and Medvedev, A. E. (2009) The study of ubiquitin-dependent increase in monoamine oxidase sensitivity to proteolysis and specific inhibitor, pargyline, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 3, 145–148.CrossRefGoogle Scholar
  17. 17.
    Schwartz, A. L., Trausch, J. S., Ciechanover, A., Slott, J. W., and Geuze, H. (1992) Immunoelectron microscopic localization of the ubiquitin-activating enzyme El in HepG2 cells, Proc. Natl. Acad. Sci. USA, 89, 5542–5546.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hormaechea-Agulla, D., Kim, Y., Song, M. S., and Song, S. J. (2018) New insights into the role of E2s in the pathogenesis of diseases: lessons learned from UBE2O, Mol. Cells, 41, 168–178, doi:  https://doi.org/10.14348/molcells.2018.0008.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Geisler, S., Vollmer, S., Golombek, S., and Kahle, P. J. (2014) The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy, J. Cell Sci., 127, 3280–3293, doi:  https://doi.org/10.1242/jcs.146035.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Patila, H., Yoon, D., Bhowmick, R., Cai, I., Cho, K. I., and Ferreira, P. A. (2019) Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin conjugating enzyme E2I (ubc9) and Ranbp2, Small GTPases, 10, 146–161.CrossRefGoogle Scholar
  21. 21.
    Lehmann, G., Ziv, T., Braten, O., Admon, A., Udasin, R. G., and Ciechanover, A. (2016) Ubiquitination of specific mitochondrial matrix proteins, Biochem. Biophys. Res. Commun., 475, 13–18, doi:  https://doi.org/10.1016/j.bbrc.2016.04.150.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jeon, H. B., Choi, E. S., Yoon, J. H., Hwang, J. H., Chang, J. W., Lee, E. K., Choi, H. W., Park, Z.-Y., and Yoo, Y. J. (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart, Biochem. Biophys. Res. Commun., 357, 731–736.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lavie, J., De Belvalet, H., Sonon, S., Ion, A. M., Dumon, E., Melser, S., Lacombe, D., Dupuy, J. W., Lalou, C., and Benard, G. (2018) Ubiquitin-dependent degradation of mitochondrial proteins regulates energy metabolism, Cell Rep., 23, 2852–2863, doi:  https://doi.org/10.1016/j.celrep.2018.05.013.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Buneeva, O., Medvedeva, M., Kopylov, A., Zgoda, V., and Medvedev, A. (2012) Use of biotinylated ubiquitin for analysis of rat brain mitochondrial proteome and interactome, Int. J. Mol. Sci., 3, 11593–11609, doi:  https://doi.org/10.3390/ijms130911593.CrossRefGoogle Scholar
  25. 25.
    Buneeva, O. A., Gnedenko, O. V., Medvedeva, M. V., Ivanov, A. S., and Medvedev, A. E. (2014) The use of immobilized ubiquitin for biosensor analysis of the mitochondrial subinteractome, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 8, 226–230.CrossRefGoogle Scholar
  26. 26.
    Buneeva, O., Kopylov, A., Kapitsa, I., Ivanova, E., Zgoda, V., and Medvedev, A. (2018) The effect of neurotoxin MPTP and neuroprotector isatin on the profile of ubiquitinated brain mitochondrial proteins, Cells, 7, E91, doi:  https://doi.org/10.3390/cells7080091.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bouter, Y., Kacprowski, T., Weissmann, R., Dietrich, K., Borgers, H., Brauß, A., Sperling, C., Wirths, O., Albrecht, M., Jensen, L. R., Kuss, A. W., and Bayer, T. A. (2014) Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer’s disease by deep sequencing, Front. Aging Neurosci., 6, 75, doi:  https://doi.org/10.3389/fnagi.2014.00075.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    He, F., and DiMario, P. J. (2011) Drosophila delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) is required for proline breakdown and mitochondrial integrity — establishing a fly model for human type II hyperprolinemia, Mitochondrion, 11, 397–404.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wagner, S. A., Beli, P., Weinert, B. T., Nielsen, M. L., Cox, J., Mann, M., and Choudhary, C. (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles, Mol. Cell. Proteomics, 10, M111.013284, doi:  https://doi.org/10.1074/mcp.M111.013284.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wagner, S. A., Beli, P., Weinert, B. T., Scholz, C., Kelstrup, C. D., Young, C., Nielsen, M. L., Olsen, J. V., Brakebusch, C., and Choudhary, C. (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues, Mol. Cell. Proteomics, 11, 1578–1585.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lee, J. Y., Song, J., Kwon, K., Jang, S., Kim, C., Baek, K., Kim, J., and Park, C. (2012) Human DJ-1 and its homologs are novel glyoxalases, Hum. Mol. Genet., 21, 3215–3225, doi:  https://doi.org/10.1093/hmg/dds155.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ariga, H., Takahashi-Niki, K., Kato, I., Maita, H., Niki, T., and Iguchi-Ariga, S. M. M. (2013) Neuroprotective function of DJ-1 in Parkinson’s disease, Oxid. Med. Cell. Longev., 2013, 683920, doi:  https://doi.org/10.1155/2013/683920.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Felts, S. J., Owen, B. A. L., Nguyen, P. M., Trepel, J., Donner, D. B., and Toft, D. O. (2000) The HSP90-related protein TRAP1 is a mitochondrial protein with distinct functional properties, J. Biol. Chem., 275, 3305–3312.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zuehlke, A. D., Beebe, K., Neckers, L., and Prince, T. (2015) Regulation and function of the human HSP90AA1 gene, Gene, 570, 8–16.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kundrat, L., and Regan, L. (2010) Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP, J. Mol. Biol., 395, 587–594.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Flynn, J. M., and Melov, S. (2013) SOD2 in mitochondrial dysfunction and neurodegeneration, Free Rad. Biol. Med., 62, 4–12, doi:  https://doi.org/10.1016/j.freeradbiomed.2013.05.027.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Scudamore, O., and Ciossek, T. (2018) Increased oxidative stress exacerbates α-synuclein aggregation in vivo, J. Neuropathol. Exp. Neurol., 77, 443–453, doi:  https://doi.org/10.1093/jnen/nly024.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cookson, M. R. (2005) The biochemistry of Parkinson’s disease, Annu. Rev. Biochem., 74, 9–52.CrossRefGoogle Scholar
  39. 39.
    Haelterman, N. A., Yoon, W. H., Sandova, H., Jaiswa, M., Shulman, J. M., and Bellen, H. J. (2014) A mitocentric view of Parkinson’s disease, Annu. Rev. Neurosci., 37, 137–159, doi:  https://doi.org/10.1146/annurev-neuro-071013-014317.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Plotegher, N., and Duchen, M. R. (2017) Crosstalk between lysosomes and mitochondria in Parkinson’s disease, Front. Cell Dev. Biol., 5, 110, doi:  https://doi.org/10.3389/fcell.2017.00110.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Doktor, B., Damulewicz, M., and Pyza, E. (2019) Overexpression of mitochondrial ligases reverses rotenone-induced effects in a Drosophila model of Parkinson’s disease, Front. Neurosci., 13, 94, doi:  https://doi.org/10.3389/fnins.2019.00094.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Covill-Cooke, C., Howden, J. H., Birsa, N., and Kittler, J. T. (2018) Ubiquitination at the mitochondria in neuronal health and disease, Neurochem. Int., 117, 55–64, doi:  https://doi.org/10.1016/j.neuint.2017.07.003.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Buneeva, O. A., and Medvedev, A. E. (2011) Mitochondrial disfunction in Parkinson’s disease, Biochemistry (Moscow) Suppl. Series B Biomed. Chem., 5, 313–336.CrossRefGoogle Scholar
  44. 44.
    Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Medvedeva, M. V., Nerobkova, L. N., Kapitsa, I. G., and Zgoda, V. G. (2017) Brain mitochondrial subproteome of Rpn10-binding proteins and its changes induced by the neurotoxin MPTP and the neuroprotector isatin, Biochemistry (Moscow), 82, 330–339.CrossRefGoogle Scholar
  45. 45.
    Lucking, C. B., Durr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., Harhangi, B. S., Meco, G., Denefle, P., Wood, N. W., Agid, Y., Brice, A., French Parkinson’s Disease Genetics Study Group, European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000) Association between early-onset Parkinson’s disease and mutations in the Parkin gene, N. Engl. J. Med., 342, 1560–1567.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Key, J., Mueller, A. K., Gispert, S., Matschke, L., Wittig, I., Corti, O., Munch, C., Decher, N., and Auburger, G. (2019) Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons, Neurobiol. Dis., 127, 114–130.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Medvedev, A., Buneeva, O., Gnedenko, O., Ershov, P., and Ivanov, A. (2018) Isatin, an endogenous non-peptide biofactor: a review of its molecular targets, mechanisms of actions and their biomedical implications, Biofactors, 44, 95–108, doi:  https://doi.org/10.1002/biof.1408.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Maret, G., Testa, B., Jenner, P., el Tayar, N., and Carrupt, P. A. (1990) The MPTP story: MAO activates tetrahydropyridine derivatives to toxins causing parkinsonism, Drug Metab. Rev., 22, 291–332.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhou, Y., Zhao, Z. Q., and Xie, J. X. (2001) Effect of isatin on rotational behavior and DA levels in caudate putamen in Parkinsonian rats, Brain Res., 917, 127–132.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hamaue, N., Minami, M., Terado, M., Hirafuji, M., Endo, T., Machida, M., Hiroshige, T., Ogata, A., Tashiro, K., Saito, H., and Parvez, S. H. (2004) Comparative study of the effects of isatin, an endogenous MAO-inhibitor, and selegiline on bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by the Japanese encephalitis virus, Neurotoxicology, 25, 205–213.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Melamed, E., and Youdim, M. B. H. (1985) Prevention of dopaminergic toxicity of MPTP in mice by phenylethylamine, a specific substrate of type B monoamine oxidase, Br. J. Pharmacol., 86, 529–531.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Crumeyrolle-Arias, M., Buneeva, O., Zgoda, V., Kopylov, A., Cardona, A., Tournaire, M. C., Pozdnev, V., Glover, V., and Medvedev, A. (2009) Isatin binding proteins in rat brain: in situ imaging, quantitative characterization of specific [H]isatin binding, and proteomic profiling, J. Neurosci. Res., 87, 2763–2772.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Buneeva, O., Gnedenko, O., Zgoda, V., Kopylov, A., Glover, V., Ivanov, A., Medvedev, A., and Archakov, A. (2010) Isatin binding proteins of rat and mouse brain: proteomic identification and optical biosensor validation, Proteomics, 10, 23–37.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ivanov, Yu. D., Panova, N. G., Gnedenko, O. V., Buneeva, O. A., Medvedev, A. E., and Archakov, A. I. (2002) Study of the tissue and subcellular distribution of isatin-binding proteins with optical biosensor, Vopr. Med. Khim., 48, 73–83.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Medvedev, A., Buneeva, O., Gnedenko, O., Fedchenko, V., Medvedeva, M., Ivanov, Y., Glover, V., and Sandler, M. (2006) Isatin interaction with glyceraldehyde-3-phosphate dehydrogenase, a putative target of neuroprotective drugs: partial agonism with deprenyl, J. Neural Transm., Suppl., 71, 97–103.Google Scholar
  56. 56.
    Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Zgoda, V. G., Medvedev, A. E., and Archakov, A. I. (2012) Effect of affinity sorbent on proteomic profiling of isatin-binding proteins of mouse brain, Biochemistry (Moscow), 77, 1326–1338.CrossRefGoogle Scholar
  57. 57.
    Shaid, S., Brandts, C. H., Serve, H., and Dikic, I. (2013) Ubiquitination and selective autophagy, Cell Death Differ., 20, 21–30, doi:  https://doi.org/10.1038/cdd.2012.72.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ji, C. H., and Kwon, Y. T. (2017) Crosstalk and interplay between the ubiquitin-proteasome system and autophagy, Mol. Cells, 40, 441–449, doi:  https://doi.org/10.14348/molcells.2017.0115.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Lehmann, G., Udasin, R. G., and Ciechanover, A. (2016) On the linkage between the ubiquitin-proteasome system and the mitochondria, Biochem. Biophys. Res. Commun., 473, 80–86.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Bragoszewski, P., Turek, M., and Chacinska, A. (2017) Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system, Open Biol., 7, 170007, doi:  https://doi.org/10.1098/rsob.170007.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Taylor, E. B., and Rutter, J. (2011) Mitochondrial quality control by the ubiquitin-proteasome system, Biochem. Soc. Trans., 39, 1509–1513, doi:  https://doi.org/10.1042/BST0391509.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lesnik, C., Cohen, Y., Atir-Lande, A., Schuldiner, M., and Arava, Y. (2014) OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria, Nat. Commun., 5, 5711, doi:  https://doi.org/10.1038/ncomms6711.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ivanov, A. S., Zgoda, V. G., and Archakov, A. I. (2011) Technologies of protein interactomics: a review, Rus. J. Bioorg. Chem., 37, 4–16.CrossRefGoogle Scholar
  64. 64.
    Ivanov, A. S., Ershov, P. V., Molnar, A. A., Mezentsev, Y. V., Kaluzhskiy, L. A., Yablokov, E. O., Florinskaya, A. V., Gnedenko, O. V., Medvedev, A. E., Kozin, S. A., Mitkevichm, V. A., Makarov, A. A., Gilep, A. A., Lushchik, A. Ya., Gaidukevich, I. V., and Usanov, S. A. (2016) Direct molecular fishing in molecular partners investigation in protein-protein and protein-peptide interactions, Rus. J. Bioorg. Chem., 42, 18–27.Google Scholar
  65. 65.
    Luck, K., Sheynkman, G. M., Zhang, I., and Vidal, M. (2017) Proteome-scale human interactomics, Trends Biochem. Sci., 42, 342–354, doi:  https://doi.org/10.1016/j.tibs.2017.02.006.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. A. Buneeva
    • 1
  • M. V. Medvedeva
    • 2
    Email author
  • A. T. Kopylov
    • 1
  • A. E. Medvedev
    • 1
  1. 1.Department of Proteomic ResearchInstitute of Biomedical ChemistryMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations