Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 11, pp 1268–1279 | Cite as

Inhibitors of Glyceraldehyde 3-Phosphate Dehydrogenase and Unexpected Effects of Its Reduced Activity

  • V. I. MuronetzEmail author
  • A. K. Melnikova
  • K. V. Barinova
  • E. V. Schmalhausen
Review

Abstract

The review describes the use of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibitors to study the enzyme and to suppress its activity in various cell types. The main problem of selective GAPDH inhibition is a highly conserved nature of the enzyme active site and, especially, Cys150 environment important for the catalytic action of cysteine sulfhydryl group. Numerous attempts to find specific inhibitors of sperm GAPDH and enzymes from Trypanosoma sp. and Mycobacterium tuberculosis that would not inhibit GAPDH of somatic mammalian cells have failed, which has pushed researchers to search for new ways to solve this problem. The sections of the review are devoted to the studies of GAPDH inactivation by reactive oxygen species, glutathione, and glycating agents. The final section discusses possible effects of GAPDH inhibition and inactivation on glycolysis and related metabolic pathways (pentose phosphate pathway, uncoupling of the glycolytic oxidation and phosphorylation, etc.).

Keywords

glyceraldehyde 3-phosphate dehydrogenase inhibitors oxidation sulfhydryl group glycation glycolysis 

Abbriviation

DHAP

dihydroxyacetone phosphate

GAPDH

glyceraldehyde 3-phosphate dehydrogenase

GAPDS

sperm-specific glyceraldehyde 3-phosphate dehydrogenase

GSH

reduced glutathione

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

The work was supported by the Russian Science Foundation (grant no. 16-14-10027).

References

  1. 1.
    Nagradova, N. K. (1956) Mechanism of action of carnosine on glycolytic oxidation reduction combined with phosphorylation, Biochemistry (Moscow), 21, 17–25.Google Scholar
  2. 2.
    Nagradova, N. K. (1965) The effect of histidine and other chelating agents on the activity of 3-phosphoglyceraldehyde dehydrogenase from rabbit muscles, Biochemistry (Moscow), 30, 50–57.Google Scholar
  3. 3.
    Schmalhausen, E. V., Nagradova, N. K., Boschi-Muller, S., Branlant, G., and Muronetz, V. I. (1999) Mildly oxidized GAPDH: the coupling of the dehydrogenase and acyl phosphatase activities, FEBS Lett., 452, 219–222.PubMedCrossRefGoogle Scholar
  4. 4.
    Danshina, P. V., Schmalhausen, E. V., Avetisyan, A. V., and Muronetz, V. I. (2001) Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis, IUBMB Life, 51, 309–314.PubMedCrossRefGoogle Scholar
  5. 5.
    Dan’shina, P. V., Schmalhausen, E. V., Arutiunov, D. Y., Pleten’, A. P., and Muronetz, V. I. (2003) Acceleration of glycolysis in the presence of the non-phosphorylating and the oxidized phosphorylating glyceraldehyde-3-phosphate dehydrogenases, Biochemistry (Moscow), 68, 593–600.CrossRefGoogle Scholar
  6. 6.
    Seidler, N. W. (2013) Basic biology of GAPDH, Adv. Exp. Med. Biol., 985, 1–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Sikand, K., Singh, J., Ebron, J. S., and Shukla, G. C. (2012) Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin are targets of miR-644a, PloS One, 7, e47510.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Caradec, J., Sirab, N., Revaud, D., Keumeugni, C., and Loric, S. (2010) Is GAPDH a relevant housekeeping gene for normalisation in colorectal cancer experiments? Br. J. Cancer, 103, 1475–1476.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Muronetz, V. I., Barinova, K. V., Stroylova, Y. Y., Semenyuk, P. I., and Schmalhausen, E. V. (2017) Glyceraldehyde-3-phosphate dehydrogenase: aggregation mechanisms and impact on amyloid neurodegenerative diseases, Int. J. Biol. Macromol., 100, 55–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Mazzola, J. L., and Sirover, M. A. (2002) Alteration of intracellular structure and function of glyceraldehyde-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology, 23, 603–609.PubMedCrossRefGoogle Scholar
  11. 11.
    Tatton, W. G., Chalmers-Redman, R. M., Elstner, M., Leesch, W., Jagodzinski, F. B., Stupak, D. P., Sugrue, M. M., and Tatton, N. A. (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling, J. Neural Transm. Suppl., 60, 77–100.Google Scholar
  12. 12.
    Cardon, J. W., and Boyer, P. D. (1982) Subunit interaction in catalysis. Some experimental and theoretical approaches with glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem., 257, 7615–7622.PubMedGoogle Scholar
  13. 13.
    Koshland, D. E. (1977) The specificity of subunit interactions, Biochem. Soc. Trans., 5, 605–606.PubMedCrossRefGoogle Scholar
  14. 14.
    Malhotra, O. P., and Bernhard, S. A. (1973) Activation of a covalent enzyme—substrate bond by noncovalent interaction with an effector, Proc. Natl. Acad. Sci. USA, 70, 2077–2081.PubMedCrossRefGoogle Scholar
  15. 15.
    Byers, L. D., and Koshland, D. E. (1975) The specificity of induced conformational changes. The case of yeast glyceraldehyde-3-phosphate dehydrogenase, Biochemistry, 14, 3661–3669.PubMedCrossRefGoogle Scholar
  16. 16.
    Levitzki, A., and Koshland, D. E. (1976) The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation, Curr. Top. Cell. Regul., 10, 1–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagradova, N. K., Ashmarina, L. I., Asryants, R. A., Cherednikova, T. V., Golovina, T. O., and Muronetz, V. I. (1980) Glyceraldehyde-3-phosphate dehydrogenase: the role of subunit interactions in enzyme functioning, Adv. Enzyme Regul., 19, 171–204.PubMedCrossRefGoogle Scholar
  18. 18.
    Nagradova, N. K. (2001) Interdomain interactions in oligomeric enzymes: creation of asymmetry in homooligomers and role in metabolite channeling between active centers of hetero-oligomers, FEBS Lett., 487, 327–332.PubMedCrossRefGoogle Scholar
  19. 19.
    Nagradova, N. K. (2001) Study of the properties of phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase, Biochemistry (Moscow), 66, 1067–1076.CrossRefGoogle Scholar
  20. 20.
    Asryants, R. A., Kuzminskaya, E. V., Tishkov, V. I., Douzhenkova, I. V., and Nagradova, N. K. (1989) An examination of the role of arginine residues in the functioning of D-glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta, 997, 159–166.PubMedCrossRefGoogle Scholar
  21. 21.
    Levashov, P. A., Schmalhausen, E. V., Muronetz, V. I., and Nagradova, N. K. (1995) E. coli D-glyceraldehyde-3-phosphate dehydrogenase modified by 2,3-butanedione: manifestation of a pairwise of non-equivalence of active centers, Biochem. Mol. Biol. Int., 37, 991–1000.PubMedGoogle Scholar
  22. 22.
    Nagradova, N. K., Schmalhausen, E. V., Levashov, P. A., Asryants, R. A., and Muronetz, V. I. (1996) D-glyceraldehyde-3-phosphate dehydrogenase. Properties of the enzyme modified at arginine residues, Appl. Biochem. Biotechnol., 61, 47–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Nagradova, N. K., Asryants, R. A., and Ivanov, M. V. (1971) Interaction of 1-anilino-8-naphthalene sulfonate with yeast glyceraldehyde-3-phosphate dehydrogenase, Experientia, 27, 1169–1170.PubMedCrossRefGoogle Scholar
  24. 24.
    Nagradova, N. K., Asryants, R. A., and Ivanov, M. V. (1972) 1-Anilino-8-naphthalene sulfonate as a coenzyme-competitive inhibitor of yeast glyceraldehyde-3-phosphate dehydrogenase: multiple inhibition studies, Biochim. Biophys. Acta, 268, 622–628.PubMedCrossRefGoogle Scholar
  25. 25.
    Golovina, T. O., Muronetz, V. I., and Nagradova, N. K. (1978) Half-of-the-sites reactivity of rat skeletal muscle D-glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta, 524, 15–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Muronets, V. I., Golovina, T. O., and Nagradova, N. K. (1982) Use of immobilization for the study of glyceraldehyde 3-phosphate dehydrogenase. Immobilized dimers of the enzyme, Biochemistry (Moscow), 47, 3–12.Google Scholar
  27. 27.
    Soukri, A., Mougin, A., Corbier, C., Wonacott, A., Branlant, C., and Branlant, G. (1989) Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis, Biochemistry, 28, 2586–2592.PubMedCrossRefGoogle Scholar
  28. 28.
    Clermont, S., Corbier, C., Mely, Y., Gerard, D., Wonacott, A., and Branlant, G. (1993) Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold, Biochemistry, 32, 10178–10184.PubMedCrossRefGoogle Scholar
  29. 29.
    Little, C., and O’Brien, P. J. (1969) Mechanism of peroxide-inactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem., 10, 533–538.PubMedCrossRefGoogle Scholar
  30. 30.
    Muronetz, V. I., Melnikova, A. K., Saso, L., and Schmalhausen, E. V. (2018) Influence of oxidative stress on catalytic and non-glycolytic functions of glyceraldehyde-3-phosphate dehydrogenase, Curr. Med. Chem., doi:  https://doi.org/10.2174/0929867325666180530101057.
  31. 31.
    You, K. S., Benitez, L. V., McConachie, W. A., and Allison, W. S. (1975) The conversion of glyceraldehyde-3-phosphate dehydrogenase to an acylphosphatase by trinitroglycerin and inactivation of this activity by azide and ascorbate, Biochim. Biophys. Acta, 384, 317–330.CrossRefGoogle Scholar
  32. 32.
    Peralta, D., Bronowska, A. K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T P. (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation, Nat. Chem. Biol., 11, 156–163.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Leichert, L. I., Gehrke, F., Gudiseva, H. V., Blackwell, T., Ilbert, M., Walker, A. K., Strahler, J. R., Andrews, P. C., and Jakob, U. (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. USA, 105, 8197–8202.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cremers, C. M., and Jakob, U. (2013) Oxidant sensing by reversible disulfide bond formation, J. Biol. Chem., 288, 26489–26496.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Roos, G., and Messens, J. (2011) Protein sulfenic acid formation: from cellular damage to redox regulation, Free Radic. Biol. Med., 51, 314–326.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Rehder, D. S., and Borges, C. R. (2010) Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding, Biochemistry, 49, 7748–7755.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bedhomme, M., Adamo, M., Marchand, C. H., Couturier, J., Rouhier, N., Lemaire, S. D., Zaffagnini, M., and Trost, P. (2012) Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro, Biochem. J., 445, 337–347.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Barinova, K. V., Serebryakova, M. V., Muronetz, V. I., and Schmalhausen, E. V. (2017) S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150—C154 intrasubunit disulfide bond in the active site of the enzyme, Biochim. Biophys. Acta, 1861, 3167–3177.CrossRefGoogle Scholar
  39. 39.
    Gao, X. H., Bedhomme, M., Veyel, D., Zaffagnini, M., and Lemaire, S. D. (2009) Methods for analysis of protein glutathionylation and their application to photosynthetic organisms, Mol. Plant, 2, 218–235.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Newman, S. F., Sultana, R., Perluigi, M., Coccia, R., Cai, J., Pierce, W. M., Klein, J. B., Turner, D. M., and Butterfield, D. A. (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach, J. Neurosci. Res., 85, 1506–1514.PubMedCrossRefGoogle Scholar
  41. 41.
    Schuppe-Koistinen, I., Moldeus, P., Bergman, T., and Cotgreave, I. A. (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment, Eur. J. Biochem., 221, 1033–1037.PubMedCrossRefGoogle Scholar
  42. 42.
    Davies, M. J. (2016) Protein oxidation and peroxidation, Biochem. J., 473, 805–825.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Elkina, Y. L., Kuravsky, M. L., El’darov, M. A., Stogov, S. V., Muronetz, V. I., and Schmalhausen, E. V. (2010) Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability, Biochim. Biophys. Acta, 1804, 2207–2212.PubMedCrossRefGoogle Scholar
  44. 44.
    Baty, J. W., Hampton, M. B., and Winterbourn, C. C. (2005) Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells, Biochem. J., 389, 785–795.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Aronov, A. M., Verlinde, C. L., Hol, W. G., and Gelb, M. H. (1998) Selective tight binding inhibitors of trypanosomal glyceraldehyde-3-phosphate dehydrogenase via structure-based drug design, J. Med. Chem., 41, 4790–4799.PubMedCrossRefGoogle Scholar
  46. 46.
    Ladame, S., Bardet, M., Perie, J., and Willson, M. (2001) Selective inhibition of Trypanosoma brucei GAPDH by 1,3-bisphospho-D-glyceric acid (1,3-diPG) analogues, Bioorg. Med. Chem., 9, 773–783.PubMedCrossRefGoogle Scholar
  47. 47.
    Callens, M., and Hannaert, V. (1995) The rational design of trypanocidal drugs: selective inhibition of the glyceraldehyde-3-phosphate dehydrogenase in Trypanosomatidae, Ann. Trop. Med. Parasitol., 89(Suppl. 1), 23–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Haanstra, J. R., Gerding, A., Dolga, A. M., Sorgdrager, F. J. H., Buist-Homan, M., du Toit, F., Faber, K. N., Holzhutter, H. G., Szoor, B., Matthews, K. R., Snoep, J. L., Westerhoff, H. V., and Bakker, B. M. (2017) Targeting pathogen metabolism without collateral damage to the host, Sci. Rep., 7, 40406.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pereira, J. M., Severino, R. P., Vieira, P. C., Fernandes, J. B., da Silva, M. F. G. F., Zottis, A., Andricopulo, A. D., Oliva, G., and Correa, A. G. (2008) Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi, Bioor. Med. Chem., 16, 8889–8895.CrossRefGoogle Scholar
  50. 50.
    Prokopczyk, I. M., Ribeiro, J. F. R., Sartori, G. R., Sesti-Costa, R., Silva, J. S., Freitas, R. F., Leitao, A., and Montanari, C. A. (2014) Integration of methods in cheminformatics and biocalorimetry for the design of trypanosomatid enzyme inhibitors, Future Med. Chem., 6, 17–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Chu, H., Puchulu-Campanella, E., Galan, J. A., Tao, W. A., Low, P. S., and Hoffman, J. F. (2012) Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps, Proc. Natl. Acad. Sci. USA, 109, 12794–12799.PubMedCrossRefGoogle Scholar
  52. 52.
    Muronetz, V. I., and Nagradova, N. K. (1990) Interaction of glyceraldehyde-3-phosphate dehydrogenase with structural elements of cells, Usp. Biol. Khim., 31, 115–131.Google Scholar
  53. 53.
    Opperdoes, F. R., and Borst, P. (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome, FEBS Lett., 80, 360–364.PubMedCrossRefGoogle Scholar
  54. 54.
    Van Calenbergh, S., Verlinde, C. L., Soenens, J., De Bruyn, A., Callens, M., Blaton, N. M., Peeters, O. M., Herdewijn, P., Rozenski, J., and Hol, W. G. J. (1995) Synthesis and structure-activity relationships of analogs of 2′-deoxy-2′-(3-methoxybenzamido)adenosine, a selective inhibitor of trypanosomal glycosomal glyceraldehyde-3-phosphate dehydrogenase, J. Med. Chem., 38, 3838–3849.PubMedCrossRefGoogle Scholar
  55. 55.
    Link, A., Heidler, P., Kaiser, M., and Brun, R. (2009) Synthesis of a series of N6-substituted adenosines with activity against trypanosomatid parasites, Eur. J. Med. Chem., 44, 3665–3671.PubMedCrossRefGoogle Scholar
  56. 56.
    Herrmann, F. C., Lenz, M., Jose, J., Kaiser, M., Brun, R., and Schmidt, T. J. (2015) In silico identification and in vitro activity of novel natural inhibitors of Trypanosoma brucei glyceraldehyde-3-phosphate-dehydrogenase, Molecules, 20, 16154–16169.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Uliassi, E., Fiorani, G., Krauth-Siegel, R. L., Bergamini, C., Fato, R., Bianchini, G., Carlos Menendez, J., Molina, M. T., Lopez-Montero, E., Falchi, F., Cavalli, A., Gul, S., Kuzikov, M., Ellinger, B., Witt, G., Moraes, C. B., Freitas-Junior, L. H., Borsari, C., Costi, M. P., and Bolognesi, M. L. (2017) Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR) and display trypanocidal activity, Eur. J. Med. Chem., 141, 138–148.PubMedCrossRefGoogle Scholar
  58. 58.
    Vinhote, J. F. C., Lima, D. B., Menezes, R. R. P. P. B., Mello, C. P., de Souza, B. M., Havt, A., Palma, M. S., Santos, R. P. D., Albuquerque, E. L., Freire, V. N., and Martins, A. M. C. (2017) Trypanocidal activity of mastoparan from Polybia paulista wasp venom by interaction with TcGAPDH, Toxicon, 137, 168–172.PubMedCrossRefGoogle Scholar
  59. 59.
    Belluti, F., Uliassi, E., Veronesi, G., Bergamini, C., Kaiser, M., Brun, R., Viola, A., Fato, R., Michels, P. A., Krauth-Siegel, R. L., Cavalli, A., and Bolognesi, M. L. (2014) Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi, ChemMedChem., 9, 371–382.PubMedCrossRefGoogle Scholar
  60. 60.
    Miki, K., Qu, W., Goulding, E. H., Willis, W. D., Bunch, D. O., Strader, L. F., Perreault, S. D., Eddy, E. M., and O’Brien, D. A. (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility, Proc. Natl. Acad. Sci. USA, 101, 16501–16506.PubMedCrossRefGoogle Scholar
  61. 61.
    Lamson, D. R., House, A. J., Danshina, P. V., Sexton, J. Z., Sanyang, K., O’Brien, D. A., Yeh, L. A., and Williams, K. P. (2011) Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDHS) is expressed at high yield as an active homotetramer in baculovirus-infected insect cells, Protein Expr. Purif., 75, 104–113.PubMedCrossRefGoogle Scholar
  62. 62.
    Chaikuad, A., Shafqat, N., Al-Mokhtar, R., Cameron, G., Clarke, A. R., Brady, R. L., Oppermann, U., Frayne, J., and Yue, W. W. (2011) Structure and kinetic characterization of human sperm-specific glyceraldehyde-3-phosphate dehydrogenase, GAPDS, Biochem. J., 435, 401–409.PubMedCrossRefGoogle Scholar
  63. 63.
    Kuravsky, M., Barinova, K., Marakhovskaya, A., Eldarov, M., Semenyuk, P., Muronetz, V., and Schmalhausen, E. (2014) Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is stabilized by additional proline residues and an interdomain salt bridge, Biochim. Biophys. Acta, 1844, 1820–1826.PubMedCrossRefGoogle Scholar
  64. 64.
    Kuravsky, M. L., Barinova, K. V., Asryants, R. A., Schmalhausen, E. V., and Muronetz, V. I. (2015) Structural basis for the NAD binding cooperativity and catalytic characteristics of sperm-specific glyceraldehyde-3-phosphate dehydrogenase, Biochimie, 115, 28–34.PubMedCrossRefGoogle Scholar
  65. 65.
    Frayne, J., Taylor, A., Cameron, G., and Hadfield, A. T. (2009) Structure of insoluble rat sperm glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via heterotetramer formation with Escherichia coli GAPDH reveals target for contraceptive design, J. Biol. Chem., 284, 22703–227012.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dan’shina, P. V., Qu, W., Temple, B. R., Rojas, R. J., Miley, M. J., Machius, M., Betts, L., and O’Brien, D. A. (2016) Structural analyses to identify selective inhibitors of glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, Mol. Hum. Reprod., 22, 410–426.CrossRefGoogle Scholar
  67. 67.
    Sexton, J. Z., Danshina, P. V., Lamson, D. R., Hughes, M., House, A. J., Yeh, L. A., O’Brien, D. A., and Williams, K. P. (2011) Development and implementation of a high throughput screen for the human sperm-specific isoform of glyceraldehyde 3-phosphate dehydrogenase (GAPDHS), Curr. Chem. Genomics, 5, 30–41.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Sevostyanova, I. A., Kulikova, K. V., Kuravsky, M. L., Schmalhausen, E. V., and Muronetz, V. I. (2012) Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is expressed in melanoma cells, Biochem. Biophys. Res. Commun., 427, 649–653.PubMedCrossRefGoogle Scholar
  69. 69.
    Boradia, V. M., Malhotra, H., Thakkar, J. S., Tillu, V. A., Vuppala, B., Patil, P., Sheokand, N., Sharma, P., Chauhan, A. S., Raje, M., and Raje, C. I. (2014) Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin, Nat. Commun., 5, 4730.PubMedCrossRefGoogle Scholar
  70. 70.
    Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W. H., Neefs, J.-M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., and Jarlier, V. (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science, 307, 223–227.PubMedCrossRefGoogle Scholar
  71. 71.
    Koul, A., Vranckx, L., Dendouga, N., Balemans, W., Van den Wyngaert, I., Vergauwen, K., Gohlmann, H. W., Willebrords, R., Poncelet, A., Guillemont, J., Bald, D., and Andries, K. (2008) Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis, J. Biol. Chem., 283, 25273–25280.PubMedCrossRefGoogle Scholar
  72. 72.
    Pethe, K., Bifani, P., Jang, J., Kang, S., Park, S., et al. (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis, Nat. Med., 19, 1157–1160.PubMedCrossRefGoogle Scholar
  73. 73.
    Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., Vicente, J. B., Sarti, P., and Giuffre, A. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171–234.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Malhotra, O. P., and Bernhard, S. A. (1981) Role of nicotinamide adenine dinucleotide as an effector in formation and reactions of acylglyceraldehyde-3-phosphate dehydrogenase, Biochemistry, 20, 5529–5538.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Muronetz, V. I., Melnikova, A. K., Seferbekova, Z. N., Barinova, K. V., and Schmalhausen, E. V. (2017) Glycation, glycolysis, and neurodegenerative diseases: is there any connection? Biochemistry (Moscow), 82, 874–886.CrossRefGoogle Scholar
  77. 77.
    Lee, H. J., Howell, S. K., Sanford, R. J., and Beisswenger, P. J. (2005) Methylglyoxal can modify GAPDH activity and structure, Ann. NY Acad. Sci., 1043, 135–145.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Muronetz, V., Barinova, K., and Schmalhausen, E. (2017) Glycation of glyceraldehyde-3-phosphate dehydrogenase in the presence of glucose and glyceraldehyde-3-phosphate, J. Int. Soc. Antioxid., 2, 1–4.Google Scholar
  79. 79.
    Cornish-Bowden, A. (1981) Thermodynamic aspects of glycolysis, Biochem. Educ., 9, 133–137.CrossRefGoogle Scholar
  80. 80.
    Veech, R. L., Raijman, L., Dalziel, K., and Krebs, H. A. (1969) Disequilibrium in the triose phosphate isomerase system in rat liver, Biochem. J., 115, 837–842.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. I. Muronetz
    • 1
    • 2
    Email author
  • A. K. Melnikova
    • 2
  • K. V. Barinova
    • 1
  • E. V. Schmalhausen
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations