Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 11, pp 1247–1255 | Cite as

New Perspective on the Reversibility of ATP Synthesis and Hydrolysis by Fo·F1-ATP Synthase (Hydrolase)

  • A. D. VinogradovEmail author
Review
  • 23 Downloads

Abstract

Fo·F1-ATPases of mitochondria, chloroplasts, and microorganisms catalyze transformation of proton motive force (the difference between the electrochemical potentials of hydrogen ion across a coupling membrane) to the free energy of ATP phosphoryl potential. It is often stated that Fo·F1-ATPases operate as reversible chemo-mechano-electrical molecular machines that provide either ATP synthesis or hydrolysis depending on particular physiological demands of an organism; the microreversibility principle of the enzyme catalysis is usually taken as a dogma. Since 1980, the author has upheld the view that the mechanisms of ATP synthesis and hydrolysis by the Fo·F1 complex are different (Vinogradov, A. D. (2000) J. Exp. Biol., 203, 41–49). In this paper, the author proposes a new model considering the existence in coupling membranes of two non-equilibrium isoforms of Fo·F1 unidirectionally catalyzing synthesis and/or hydrolysis of ATP.

Keywords

Fo·F1-ATPase reversibility of enzymatic catalysis 

Abbriviation

Fo·F1

H+-translocating ATPase (synthase)

p

proton motive force

Pd-SBP

inside-out Paracoccus denitrificans plasma membrane vesicles

SMP

submitochondrial particles

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author is grateful to his colleagues (all graduated from the Department of Biochemistry) who participated in the studies of Fo·F1. I thank Dr. V. G. Grivennikova for her great help in preparation of this manuscript and editorial comments.

Funding

This work has been continuously supported by the Russian Foundation for Basic Research, starting from its foundation (including current project 17-04-00706/17).

References

  1. 1.
    Vinogradov, A. D. (1984) Catalytic properties of mitochondrial ATP-synthetase, Biokhimiya, 49, 1220–1238.Google Scholar
  2. 2.
    Vinogradov, A. D. (1999) Mitochondrial ATP synthase: fifteen years later, Biochemistry (Moscow), 64, 1219–1229.Google Scholar
  3. 3.
    Vinogradov, A. D. (2000) Steady-state and pre-steady-state kinetics of the mitochondrial Fo·F1-ATPase: is ATP synthase a reversible molecular machine? J. Exp. Biol., 203, 41–49.PubMedGoogle Scholar
  4. 4.
    Akimenko, V. K., Minkov, I. B., Bakeeva, L. E., and Vinogradov, A. D. (1972) Isolation and properties of soluble ATPase from bovine heart mitochondria, Biokhimiya, 37, 348–359.Google Scholar
  5. 5.
    Akimenko, V. K., Minkov, I. B., and Vinogradov, A. D. (1971) Action of uncouplers on soluble mitochondrial ATPase, Biokhimiya, 36, 655–658.Google Scholar
  6. 6.
    Zharova, T. V., and Vinogradov, A. D. (2006) Requirement of medium ADP for the steady-state hydrolysis of ATP by the proton-translocating Paracoccus denitrificans Fo·F1-ATP synthase, Biochim. Biophys. Acta, 1757, 304–310; doi:  https://doi.org/10.1016/j.bbabio.2006.03.001.CrossRefGoogle Scholar
  7. 7.
    Syroeshkin, A. V., Galkin, M. A., Sedlov, A. V., and Vinogradov, A. D. (1999) Kinetic mechanism of Fo·F1 mitochondrial ATPase: Mg2+ requirement for Mg·ATP hydrolysis, Biochemistry (Moscow), 64, 1128–1137.Google Scholar
  8. 8.
    Minkov, I. B., Fitin, A. F., Vasilyeva, E. A., and Vinogradov, A. D. (1979) Mg2+-induced ADP-dependent inhibition of the ATPase activity of beef heart mitochondrial coupling factor F1, Biochem. Biophys. Res. Commun., 89, 1300–1306; doi:  https://doi.org/10.1016/0006-291x(79)92150-8.CrossRefGoogle Scholar
  9. 9.
    Bulygin, V. V., and Vinogradov, A. D. (1991) Interaction of Mg2+ with Fo·F1 mitochondrial ATPase as related to its slow active/inactive transition, Biochem. J., 276, 149–156; doi:  https://doi.org/10.1042/bj2760149.CrossRefGoogle Scholar
  10. 10.
    Bulygin, V. V., Syroeshkin, A. V., and Vinogradov, A. D. (1993) Nucleotide/H+-dependent change in Mg2+ affinity at the ATPase inhibitory site of the mitochondrial Fo·F1-ATP synthase, FEBS Lett., 328, 193–196; doi:  https://doi.org/10.1016/0014-5793(93)80991-3.CrossRefGoogle Scholar
  11. 11.
    Panchenko, M. V., and Vinogradov, A. D. (1985) Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein, FEBS Lett., 184, 226–230; doi:  https://doi.org/10.1016/0014-5793(85)80611-6.CrossRefGoogle Scholar
  12. 12.
    Panchenko, M. V., and Vinogradov, A. D. (1989) Kinetics of the interaction of ATPase of submitochondrial fragments and a natural protein-inhibitor, Biokhimiya, 54, 569–579.Google Scholar
  13. 13.
    Vasil’eva, E. A., Panchenko, M. V., and Vinogradov, A. D. (1989) Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during ΔμH+ generation on a membrane, Biokhimiya, 54, 1490–1498.Google Scholar
  14. 14.
    Fitin, A. F., Vasilyeva, E. A., and Vinogradov, A. D. (1979) An inhibitory high affinity binding site for ADP in the oligomycin-sensitive ATPase of beef heart submitochondrial particles, Biochem. Biophys. Res. Commun., 86, 434–439; doi:  https://doi.org/10.1016/0006-291x(79)90884-2.CrossRefGoogle Scholar
  15. 15.
    Yalamova, M. V., Vasilyeva, E. A., and Vinogradov, A. D. (1982) Mutually dependent influence of ADP and Pi on the activity of mitochondrial adenosine triphosphatase, Biochem. Int., 4, 337–344.Google Scholar
  16. 16.
    Vasilyeva, E. A., Fitin, A. F., Minkov, I. B., and Vinogradov, A. D. (1980) Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with ATPase of bovine heart submitochondrial particles, Biochem. J., 188, 807–815; doi:  https://doi.org/10.1042/bj1880807.CrossRefGoogle Scholar
  17. 17.
    Vasilyeva, E. A., Minkov, I. B., Fitin, A. F., and Vinogradov, A. D. (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulfite, Biochem. J., 202, 15–23; doi:  https://doi.org/10.1042/bj2020015.CrossRefGoogle Scholar
  18. 18.
    Vasilyeva, E. A., Minkov, I. B., Fitin, A. F., and Vinogradov, A. D. (1982) Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics, Biochem. J., 202, 9–14; doi:  https://doi.org/10.1042/bj2020009.CrossRefGoogle Scholar
  19. 19.
    Galkin, M. A., and Vinogradov, A. D. (1999) Energy-dependent transformation of the catalytic activities of the mitochondrial Fo·F1-ATP-synthase, FEBS Lett., 448, 123–126; doi:  https://doi.org/10.1016/s0014-5793(99)00347-6.CrossRefGoogle Scholar
  20. 20.
    Bulygin, V. V., and Vinogradov, A. D. (1989) Kinetic evidence of the interaction of three nucleotide-binding centers of mitochondrial ATP-synthetase, Biokhimiya, 54, 1359–1367.Google Scholar
  21. 21.
    Minkov, I. B., Vasilyeva, E. A., Fitin, A. F., and Vinogradov, A. D. (1980) Differential effects of ADP on ATPase and oxidative phosphorylation in submitochondrial particles, Biochem. Int., 1, 478–485.Google Scholar
  22. 22.
    Syroeshkin, A. V., Vasilyeva, E. A., and Vinogradov, A. D. (1995) ATP synthesis catalyzed by the mitochondrial F1·Fo-ATP-synthase is not a reversal of its ATPase activity, FEBS Lett., 366, 29–32; doi:  https://doi.org/10.1016/0014-5793(95)00487-t.CrossRefGoogle Scholar
  23. 23.
    Zharova, T. V., and Vinogradov, A. D. (2014) ATPase/synthase activity of Paracoccus denitrificans Fo·F1 as related to the respiratory control phenomenon, Biochim. Biophys. Acta, 1837, 1322–1329; doi:  https://doi.org/10.1016/j.bbabio.2014.04.002.CrossRefGoogle Scholar
  24. 24.
    Zharova, T. V., and Vinogradov, A. D. (2003) Proton-translocating ATP-synthase of Paracoccus denitrificans: ATP-hydrolytic activity, Biochemistry (Moscow), 68, 1101–1108.CrossRefGoogle Scholar
  25. 25.
    Zharova, T. V., and Vinogradov, A. D. (2004) Energy-dependent transformation of Fo·F1-ATPase in Paracoccus denitrificans plasma membranes, J. Biol. Chem., 279, 12319–12324; doi:  https://doi.org/10.1074/jbc.M311397200.CrossRefGoogle Scholar
  26. 26.
    Kegyarikova, K. A., Zharova, T. V., and Vinogradov, A. D. (2010) Paracoccus denitrificans proton-translocating ATPase: kinetics of oxidative phosphorylation, Biochemistry (Moscow), 75, 1264–1271.CrossRefGoogle Scholar
  27. 27.
    Zharova, T. V., and Vinogradov, A. D. (2006) Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by Fo·F1-ATP-synthase, Biochemistry, 45, 14552–14558; doi:  https://doi.org/10.1021/bi061520v.CrossRefGoogle Scholar
  28. 28.
    Zharova, T. V., and Vinogradov, A. D. (2017) Functional heterogeneity of Fo·F1 H+-ATPase/synthase in coupled Paracoccus denitrificans plasma membranes, Biochim. Biophys. Acta, 1858, 939–944; doi:  https://doi.org/10.1016/j.bbabio.2017.08.006.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Biology, Department of BiochemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations