Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 954–962 | Cite as

Analysis of Direct Effects of the CB1 Receptor Antagonist Rimonabant on Fatty Acid Oxidation and Glycogenolysis in Liver and Muscle Cells in vitro

  • G. A. MüllerEmail author
  • S. Wied
  • A. W. Herling
Article

Abstract

Recent pharmacological findings regarding rimonabant, an anorectic and cannabinoid type 1 receptor (CB1R) antagonist, strongly suggest that some of its effects on the metabolic parameters and energy balance in rats are not related to the centrally mediated reduction in caloric intake. Instead, they may be associated with acute induction of glycogenolysis in the liver, in combination with transient increase in glucose oxidation and persistent increase in fat oxidation. It is possible that rimonabant produced direct shortor long-term stimulatory effect on these processes in primary and cultured rat cells. Rimonabant slightly stimulated β-oxidation of long-chain fatty acids in cultured rat myocytes overexpressing glucose transporter isoform 4, as well as activated phosphorylation of adenosine monophosphate-dependent protein kinase (AMPK) in primary rat hepatocytes upon long-term incubation. However, short-term action of rimonabant failed to stimulate β-oxidation in myocytes, myotubes, and hepatocytes, as well as to upregulate AMPK phosphorylation, glycogenolysis, and cAMP levels in hepatocytes. As a consequence, the acute effects of rimonabant on hepatic glycogen content (reduction) and total energy expenditure (increase) in rats fed with a standard diet cannot be explained by direct stimulation of glycogenolysis and fatty acid oxidation in muscles and liver. Rather, these effects seem to be centrally mediated.

Keywords

AMP- and cAMP-dependent signaling cannabinoid receptor 1 glucose and lipid metabolism obesity 

Abbreviations

ACC

acetyl-CoA carboxylase

AGRP

agouti-related peptide

AICAR

5-aminoimidazole-4-carboxamide ribonucleotide

AMPK

adenosine monophosphate-dependent protein kinase

CART

cocaine- and amphetamine-regulated transcript

CB1R

cannabinoid type 1 receptor

CCK

cholecystokinin

EBSS

Earl’s balanced salt solution

(F)FA

(free) fatty acid

Glut4

glucose transport isoform 4

HBSS

Hank’s balanced salt solution

IBMX

3-isobutyl-1-methylxanthine

MCH

melanin-concentrating hormone

NPY

neuropeptide Y

PKA

protein kinase A

POMC

proopiomelanocortin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest. The authors declare no conflict of interest neither in financial nor in any other area.

Compliance with ethical standards. This article does not contain any studies involving animals or human participants performed by any of the authors.

References

  1. 1.
    Sack, N., Hutcheson, J. R., Watts, J. M., and Webb, R. E. (1990) Case report: the effect of tetrahydrocannabinol on food intake during chemotherapy, J. Am. Coll. Nutr., 9, 630–632.CrossRefGoogle Scholar
  2. 2.
    Di Marzo, V., Goparaju, S. K., Wang, L., Liu, J., Batkai, S., Jarai, Z., Fezza, F., Miura, G. I., and Palmiter, R. D. (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake, Nature, 410, 822–825.CrossRefGoogle Scholar
  3. 3.
    Di Marzo, V., and Matias, I. (2005) Endocannabinoid control of food intake and energy balance, Nat. Neurosci., 8, 585–589.CrossRefGoogle Scholar
  4. 4.
    Cohen, K., Weizman, A., and Weinstein, A. (2019) Positive and negative effects of cannabis and cannabinoids on health, Clin. Pharmacol. Ther., 105, 1139–1147, doi: 10.1002/cpt.1381.CrossRefGoogle Scholar
  5. 5.
    Benardis, L. L., and Bellinger, L. L. (1996) The lateral hypothalamic area revisited: ingestive behavior, Neurosci. Biobehav. Rev., 20, 189–287.CrossRefGoogle Scholar
  6. 6.
    Spiegelman, B. M., and Flier, J. S. (2001) Obesity and the regulation of energy balance, Cell, 104, 531–543.CrossRefGoogle Scholar
  7. 7.
    Barsh, G. S., and Schwartz, M. W. (2002) Genetic approaches to studying energy balance, Nat. Rev. Genet., 3, 589–600.CrossRefGoogle Scholar
  8. 8.
    Hilairet, S., Bouaboula, M., Carriere, D., Le Fur, G., and Casellas, P. (2003) Hypersensitization of the orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716, J. Biol. Chem., 278, 23731–23737.Google Scholar
  9. 9.
    Rinaldi-Carmona, M., Barth, F., Heaulme, M., Alonso, R., Shire, D., Congy, C., Soubrie, P., Breliere, J. C., and Le Fur, G. (1995) Biochemical and pharmacological characterization of SR141716, the first potent and selective brain cannabinoid receptor antagonist, Life Sci., 56, 1941–1947.CrossRefGoogle Scholar
  10. 10.
    Van Gaal, L. F., Rissanen, A. M., Scheen, A. J., Ziegler, O., and Rossner, S. (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study, Lancet, 365, 1389–1397.CrossRefGoogle Scholar
  11. 11.
    Ravinet, T. C., Delgorge, C., Menet, C., Arnone, M., and Soubrie, P. (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity, Int. J. Obes. Relat. Metab. Disord., 28, 640–648.CrossRefGoogle Scholar
  12. 12.
    Gomez, R., Navarro, M., Ferrer, B., Trigo, J. M., Bilbao, A., Del, A., Cippitelli, A., Nava, F., Piomelli, D., and Rodriguez, D. F. (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding, J. Neurosci., 22, 9612–9617.CrossRefGoogle Scholar
  13. 13.
    Freedland, C. S., Poston, J. S., and Porrino, L. J. (2000) Effects of SR141716A, a central cannabinoid receptor antagonist, on food-maintained responding, Pharmacol. Biochem. Behav., 67, 265–270.CrossRefGoogle Scholar
  14. 14.
    Jbilo, O., Ravinet-Trillou, C., Arnone, M., Buisson, I., Bribes, E., Peleraux, A., Penarier, G., Soubrie, P., Le Fur, G., Galiegue, S., and Casellas, P. (2005) The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance, FASEB J., 19, 1567–1569.CrossRefGoogle Scholar
  15. 15.
    Ravinet, T. C., Arnone, M., Delgorge, C., Gonalons, N., Keane, P., Maffrand, J. P., and Soubrie, P. (2003) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice, Am. J. Physiol. Regul. Integr. Comp. Physiol., 284, R345–353.CrossRefGoogle Scholar
  16. 16.
    Seglen, P. O. (1976) Preparation of isolated rat liver cells, Methods Cell Biol., 13, 29–83.CrossRefGoogle Scholar
  17. 17.
    Kreamer, B. L., Steacker, J. L., Sawada, N., Sattler, G. L., Hsia, M. T., and Pitot, H. C. (1986) Use of a low-speed, iso-density Percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations, In Vitro Cell Dev. Biol., 22, 201–211.CrossRefGoogle Scholar
  18. 18.
    Minnich, A., Tian, N., Byan, L., and Bilder, G. (2001) A potent PPARalpha agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 280, E270–279.CrossRefGoogle Scholar
  19. 19.
    Schmoll, D., Fuhrmann, E., Gebhardt, R., and Hamprecht, B. (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxy kinase isoenzyme, Eur. J. Biochem., 227, 308–315.CrossRefGoogle Scholar
  20. 20.
    Muller, G., Jung, C., Wied, S., Welte, S., and Frick, W. (2001) Insulin-mimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components, Biochemistry, 40, 14603–14620.CrossRefGoogle Scholar
  21. 21.
    Kahn, B. B., Alquier, T., Carling, D., and Hardie, D. G. (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism, Cell Metab., 1, 15–25.CrossRefGoogle Scholar
  22. 22.
    Kola, B., Hubina, E., Tucci, S. A., Kirkham, T. C., Garcia, E. A., Mitchell, S. E., Williams, L. M., Hawley, S. A., Hardie, D. G., Grossman, A. B., and Korbonits, M. (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase, J. Biol. Chem., 280, 25196–25201.CrossRefGoogle Scholar
  23. 23.
    Müller, G. A., Herling, A. W., and Wied, S. (2019) Upregulation of phosphorylation of lipid droplet-associated proteins in primary rat adipocytes by the cannabinoid receptor 1 antagonist rimonabant, Arch. Physiol. Biochem., in press.Google Scholar
  24. 24.
    Osei-Hyiaman, D., DePetrillo, M., Pacher, P., Liu, J., Radaeva, S., Batkai, S., Harvey-White, J., Mackie, K., Offertaler, L., Wang, L., and Kunos, G. (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity, J. Clin. Invest., 115, 1298–1305.CrossRefGoogle Scholar
  25. 25.
    Bensaid, M., Gary-Bobo, M., Esclangon, A., Maffrand, J. P., Le Fur, G., Oury-Donat, F., and Soubrie, P. (2003) The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells, Mol. Pharmacol., 63, 908–914.CrossRefGoogle Scholar
  26. 26.
    Brown, D. A. (2001) Lipid droplets: proteins floating on a pool of fat, Curr. Biol., 11, R446–R449.CrossRefGoogle Scholar
  27. 27.
    Blanchette-Mackie, E. J., Dwyer, N. K., Barber, T., Coxey, R. A., Takeda, T., Rondinone, C. M., Theodorakis, J. L., Greenberg, A. S., and Londos, C. (1995) Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes, J. Lipid Res., 36, 1211–1226.Google Scholar
  28. 28.
    Yeaman, S. J. (2004) Hormone-sensitive lipase — new roles for an old enzyme, Biochem. J., 379, 11–22.CrossRefGoogle Scholar
  29. 29.
    Herling, A. W., Kilp, S., Juretschke, H. P., Neumann-Haefelin, C., Gerl, M., and Kramer, W. (2008) Reversal of visceral adiposity in candy-diet fed female Wistar rats by the CB1 receptor antagonist rimonabant, Int. J. Obes., 32, 1363–1372.CrossRefGoogle Scholar
  30. 30.
    Lu, Y., and Anderson, H. D. (2017) Cannabinoid signaling in health and disease, Can. J. Physiol. Pharmacol., 95, 311–327.CrossRefGoogle Scholar
  31. 31.
    Simon, V., and Cota, D. (2017) Mechanisms in endocrinology: endocannabinoids and metabolism: past, present and future, Eur. J. Endocrinol., 176, R309–R324.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Helmholtz Diabetes Center (HDC) at the Helmholtz Center for Health and Environment MunichInstitute for Diabetes and Obesity (IDO)OberschleissheimGermany
  2. 2.Ludwig-Maximilians-University of Munich, Department Biology I, GeneticsPlanegg-MartinsriedGermany
  3. 3.Sanofi Pharma Germany GmbH, Diabetes ResearchFrankfurt am MainGermany

Personalised recommendations