Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 931–940 | Cite as

Thermostable Lichenase from Clostridium thermocellum as a Host Protein in the Domain Insertion Approach

  • O. S. PavlenkoEmail author
  • O. A. Gra
  • O. N. MustafaevEmail author
  • K. V. Kabarbaeva
  • N. S. Sadovskaya
  • A. A. Tyurin
  • V. S. Fadeev
  • I. V. Goldenkova-PavlovaEmail author
Article
  • 7 Downloads

Abstract

Clostridium thermocellum lichenase (endo-β-1,3;1,4-glucan-D-glycosyl hydrolase, EC 3.2.1.73 (P29716)) has been tested for the insertion of two model fluorescent proteins (EGFP and TagRFP) into two regions of this enzyme. Functional folding of the resulting proteins was confirmed by retention of lichenase activity and EGFP and TagRFP fluorescence. These results convincingly demonstrate that (i) the two experimentally selected lichenase loop regions may serve as the areas for domain insertion without disturbing enzyme folding in vivo; (ii) lichenase permits not only single but also tandem insertions of large protein domains. High specific activity, outstanding thermostability, and efficient in vitro refolding of thermostable lichenase make it an attractive new host protein for the insertional fusion of domains in the engineering of multifunctional proteins.

Keywords

lichenase fluorescent proteins single and tandem insertions of proteins 

Abbreviations

BLA

β-lactamase

PGK

phosphoglycerate kinase

TSP

total soluble protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. This work was supported by the Russian Foundation for Basic Research (project 16-34-00249; AAT).

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10541_2019_809_MOESM1_ESM.pdf (187 kb)
SUPPLEMENT

References

  1. 1.
    Cota, J., Oliveira, L. C., Damasio, A. R., Citadini, A. P., Hoffmam, Z. B., Alvarez, T. M., Codima, C. A., Leite, V. B., Pastore, G., de Oliveira-Neto, M., Murakami, M. T., Ruller, R., and Squina, F. M. (2013) Assembling a xylanase-lichenase chimera through all-atom molecular dynamics simulations, Biochim. Biophys. Acta, 1834, 1492–1500, doi:  https://doi.org/10.1016/j.bbapap.2013.02.030.CrossRefGoogle Scholar
  2. 2.
    Furtado, G. P., Ribeiro, L. F., Lourenzoni, M. R., and Ward, R. J. (2013) A designed bifunctional laccase/beta-1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse, Protein Eng. Des. Sel., 26, 15–23, doi:  https://doi.org/10.1093/protein/gzs057.CrossRefGoogle Scholar
  3. 3.
    Liu, W. C., Lin, Y. S., Jeng, W. Y., Chen, J. H., Wang, A. H., and Shyur, L. F. (2012) Engineering of dual-functional hybrid glucanases, Protein Eng. Des. Sel., 25, 771–780, doi:  https://doi.org/10.1093/protein/gzs083.CrossRefGoogle Scholar
  4. 4.
    Rizk, M., Antranikian, G., and Elleuche, S. (2012) End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes, Biochem. Biophys. Res. Commun., 428, 1–5, doi:  https://doi.org/10.1016/j.bbrc.2012.09.142.CrossRefGoogle Scholar
  5. 5.
    Goldenkova-Pavlova, I. V., Tyurin, A. A., and Mustafaev, O. N. (2018) The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications, Appl. Microbiol. Biotechnol., 102, 3951–3965, doi:  https://doi.org/10.1007/s00253-018-8904-x.CrossRefGoogle Scholar
  6. 6.
    Faria, A. R., de Castro Veloso, L., Coura-Vital, W., Reis, A. B., Damasceno, L. M., Gazzinelli, R. T., and Andrade, H. M. (2015) Novel recombinant multiepitope proteins for the diagnosis of asymptomatic leishmania infantum-infected dogs, PLoS Negl. Trop. Dis., 9, e3429, doi:  https://doi.org/10.1371/journal.pntd.0003429.CrossRefGoogle Scholar
  7. 7.
    Jacquet, N., Navarre, C., Desmecht, D., and Boutry, M. (2014) Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity, PLoS One, 9, e115944, doi:  https://doi.org/10.1371/journal.pone.0115944.CrossRefGoogle Scholar
  8. 8.
    Schmidt, S. R. (2013) Fusion Protein Technologies for Biopharmaceuticals: Applications and Challenges, John Wiley & Sons, USA.CrossRefGoogle Scholar
  9. 9.
    Schoeffler, A. J., May, A. P., and Berger, J. M. (2010) A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function, Nucleic Acids Res., 38, 7830–7844, doi:  https://doi.org/10.1093/nar/gkq665.CrossRefGoogle Scholar
  10. 10.
    Betton, J. M., Jacob, J. P., Hofnung, M., and Broome-Smith, J. K. (1997) Creating a bifunctional protein by insertion of beta-lactamase into the maltodextrin-binding protein, Nat. Biotechnol., 15, 1276–1279, doi:  https://doi.org/10.1038/nbt1197-1276.CrossRefGoogle Scholar
  11. 11.
    Ay, J., Gotz, F., Borriss, R., and Heinemann, U. (1998) Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain, Proc. Natl. Acad. Sci. USA, 95, 6613–6618, doi:  https://doi.org/10.1073/pnas.95.12.6613.CrossRefGoogle Scholar
  12. 12.
    Yu, K., Liu, C., Kim, B. G., and Lee, D. Y. (2015) Synthetic fusion protein design and applications, Biotechnol. Adv., 33, 155–164, doi:  https://doi.org/10.1016/j.biotechadv.2014.11.005.CrossRefGoogle Scholar
  13. 13.
    Tyurin, A. A., Kabardaeva, K. V., Mustafaev, O. N., Pavlenko, O. S., Sadovskaya, N. S., Fadeev, V. S., Zvonova, E. A., and Goldenkova-Pavlova, I. V. (2018) Expression of soluble active interferon alphaA in Escherichia coli periplasm by fusion with thermostable lichenase using the domain insertion approach, Biochemistry (Moscow), 83, 259–269, doi:  https://doi.org/10.1134/S0006297918030069.CrossRefGoogle Scholar
  14. 14.
    Biondi, R. M., Veron, M., Baehler, P. J., and Reymond, C. D. (1998) Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum, Nucleic Acids Res., 26, 4946–4952, doi:  https://doi.org/10.1093/nar/26.21.4946.CrossRefGoogle Scholar
  15. 15.
    Guntas, G., Mitchell, S. F., and Ostermeier, M. (2004) A molecular switch created by in vitro recombination of non-homologous genes, Chem. Biol., 11, 1483–1487, doi:  https://doi.org/10.1016/j.chembiol.2004.08.020.CrossRefGoogle Scholar
  16. 16.
    Kanwar, M., Wright, R. C., Date, A., Tullman, J., and Ostermeier, M. (2013) Protein switch engineering by domain insertion, Methods Enzymol., 523, 369–388, doi:  https://doi.org/10.1016/B978-0-12-394292-0.00017-5.CrossRefGoogle Scholar
  17. 17.
    Simm, A. M., Baldwin, A. J., Busse, K., and Jones, D. D. (2007) Investigating protein structural plasticity by surveying the consequence of an amino acid deletion from TEM-1 beta-lactamase, FEBS Lett., 581, 3904–3908, doi:  https://doi.org/10.1016/j.febslet.2007.07.018.CrossRefGoogle Scholar
  18. 18.
    Edwards, W. R., Busse, K., Allemann, R. K., and Jones, D. D. (2008) Linking the functions of unrelated proteins using a novel directed evolution domain insertion method, Nucleic Acids Res., 36, e78, doi:  https://doi.org/10.1093/nar/gkn363.CrossRefGoogle Scholar
  19. 19.
    Bliven, S., and Prlic, A. (2012) Circular permutation in proteins, Plos Comput. Biol., 8, e1002445, doi:  https://doi.org/10.1371/journal.pcbi.1002445.CrossRefGoogle Scholar
  20. 20.
    Jones, A. M., Mehta, M. M., Thomas, E. E., Atkinson, J. T., Segall-Shapiro, T. H., Liu, S., and Silberg, J. J. (2016) The structure of a thermophilic kinase shapes fitness upon random circular permutation, ACS Synth. Biol., 5, 415–425, doi:  https://doi.org/10.1021/acssynbio.5b00305.CrossRefGoogle Scholar
  21. 21.
    Selvam, R. A., and Sasidharan, R. (2004) DomIns: a web resource for domain insertions in known protein structures, Nucleic Acids Res., 32, D193–D195, doi:  https://doi.org/10.1093/nar/gkh047.CrossRefGoogle Scholar
  22. 22.
    Kufner, K., and Lipps, G. (2013) Construction of a chimeric thermoacidophilic beta-endoglucanase, BMC Biochem., 14, 11, doi:  https://doi.org/10.1186/1471-2091-14-11.CrossRefGoogle Scholar
  23. 23.
    Peng, Q., and Li, H. (2009) Direct observation of tug-of-war during the folding of a mutually exclusive protein, J. Am. Chem. Soc., 131, 13347–13354, doi:  https://doi.org/10.1021/ja903480j.CrossRefGoogle Scholar
  24. 24.
    Pierre, B., Xiong, T., Hayles, L., Guntaka, V. R., and Kim, J. R. (2011) Stability of a guest protein depends on stability of a host protein in insertional fusion, Biotechnol. Bioeng., 108, 1011–1020, doi:  https://doi.org/10.1002/bit.23039.CrossRefGoogle Scholar
  25. 25.
    Ribeiro, L. F., Furtado, G. P., Lourenzoni, M. R., Costa-Filho, A. J., Santos, C. R., Nogueira, S. C., Betini, J. A., Polizeli Mde, L., Murakami, M. T., and Ward, R. J. (2011) Engineering bifunctional laccase-xylanase chimeras for improved catalytic performance, J. Biol. Chem., 286, 43026–43038, doi:  https://doi.org/10.1074/jbc.M111.253419.CrossRefGoogle Scholar
  26. 26.
    Elleuche, S. (2015) Bringing functions together with fusion enzymes — from nature’s inventions to biotechnological applications, Appl. Microbiol. Biotechnol., 99, 1545–1556, doi:  https://doi.org/10.1007/s00253-014-6315-1.CrossRefGoogle Scholar
  27. 27.
    Edwards, W. R., Williams, A. J., Morris, J. L., Baldwin, A. J., Allemann, R. K., and Jones, D. D. (2010) Regulation of beta-lactamase activity by remote binding of heme: functional coupling of unrelated proteins through domain insertion, Biochemistry, 49, 6541–6549, doi:  https://doi.org/10.1021/bi100793y.CrossRefGoogle Scholar
  28. 28.
    Tyurin, A. A., Sadovskaya, N. S., Nikiforova, K. R., Mustafaev, O. N., Komakhin, R. A., Fadeev, V. S., and Goldenkova-Pavlova, I. V. (2015) Clostridium thermocellum thermostable lichenase with circular permutations and modifications in the N-terminal region retains its activity and thermostability, Biochim. Biophys. Acta, 1854, 10–19, doi:  https://doi.org/10.1016/j.bbapap.2014.10.012.CrossRefGoogle Scholar
  29. 29.
    Schimming, S., Schwarz, W. H., and Staudenbauer, W. L. (1992) Structure of the Clostridium thermocellum gene licB and the encoded β-1,3-1,4-glucanase, Eur. J. Biochem., 204, 13–19, doi:  https://doi.org/10.1111/j.1432-1033.1992.tb16600.x.CrossRefGoogle Scholar
  30. 30.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.Google Scholar
  31. 31.
    Piruzian, E. S., Goldenkova, I. V., Musiychuk, K. A., Kobets, N. S., Arman, I. P., Bobrysheva, I. V., Chekhuta, I. A., and Glazkova, D. (2002) A reporter system for prokaryotic and eukaryotic cells based on the thermostable lichenase from Clostridium thermocellum, Mol. Genet. Genomics, 266, 778–786, doi:  https://doi.org/10.1007/s00438-001-0595-8.CrossRefGoogle Scholar
  32. 32.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254, doi:  https://doi.org/10.1016/0003-2697(76)90527-3.CrossRefGoogle Scholar
  33. 33.
    Evdokimov, A. G., Pokross, M. E., Egorov, N. S., Zaraisky, A. G., Yampolsky, I. V., Merzlyak, E. M., Shkoporov, A. N., Sander, I., Lukyanov, K. A., and Chudakov, D. M. (2006) Structural basis for the fast maturation of Arthropoda green fluorescent protein, EMBO Rep., 7, 1006–1012, doi:  https://doi.org/10.1038/sj.embor.7400787.CrossRefGoogle Scholar
  34. 34.
    Kanzow, C., Yamashita, N., and Fukushima, M. (2004) Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, J. Comput. Appl. Math., 172, 375–397, doi:  https://doi.org/10.1016/j.cam.2004.02.013.CrossRefGoogle Scholar
  35. 35.
    Arpino, J. A., Rizkallah, P. J., and Jones, D. D. (2014) Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein, Acta Crystallogr. D, 70, 2152–2162, doi:  https://doi.org/10.1107/S139900471401267X.CrossRefGoogle Scholar
  36. 36.
    Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S., Gadella, T. W., and Chudakov, D. M. (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime, Nat. Methods, 4, 555–557, doi:  https://doi.org/10.1038/nmeth1062.CrossRefGoogle Scholar
  37. 37.
    Subach, O. M., Malashkevich, V. N., Zencheck, W. D., Morozova, K. S., Piatkevich, K. D., Almo, S. C., and Verkhusha, V. V. (2010) Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins, Chem. Biol., 17, 333–341, doi:  https://doi.org/10.1016/j.chembiol.2010.03.005.CrossRefGoogle Scholar
  38. 38.
    Stepanenko, O. V., Stepanenko, O. V., Kuznetsova, I. M., Verkhusha, V. V., and Turoverov, K. K. (2013) Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation, Int. Rev. Cell. Mol. Biol., 302, 221–278, doi:  https://doi.org/10.1016/B978-0-12-407699-0.00004-2.CrossRefGoogle Scholar
  39. 39.
    Zoldak, G., Carstensen, L., Scholz, C., and Schmid, F. X. (2009) Consequences of domain insertion on the stability and folding mechanism of a protein, J. Mol. Biol., 386, 1138–1152, doi:  https://doi.org/10.1016/j.jmb.2008.12.052.CrossRefGoogle Scholar
  40. 40.
    Zverlov, V. V., and Schwarz, W. H. (2008) Bacterial cellulose hydrolysis in anaerobic environmental subsystems — Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders, Ann. NY Acad. Sci., 1125, 298–307, doi:  https://doi.org/10.1196/annals.1419.008.CrossRefGoogle Scholar
  41. 41.
    Viguera, A.-R., and Serrano, L. (1997) Loop length, intramolecular diffusion and protein folding, Nat. Struct. Biol., 4, 939–946, doi:  https://doi.org/10.1038/nsb1197-939.CrossRefGoogle Scholar
  42. 42.
    Bloom, J. D., Labthavikul, S. T., Otey, C. R., and Arnold, F. H. (2006) Protein stability promotes evolvability, Proc. Natl. Acad. Sci. USA, 103, 5869–5874, doi:  https://doi.org/10.1073/pnas.0510098103.CrossRefGoogle Scholar
  43. 43.
    Ward, W. W. (2006) Biochemical and physical properties of green fluorescent protein, Methods Biochem. Anal., 47, 39–66, doi:  https://doi.org/10.1002/0471739499.ch3.Google Scholar
  44. 44.
    Gerasymenko, I., Sheludko, Y., Frabel, S., Staniek, A., and Warzecha, H. (2019) Combinatorial biosynthesis of small molecules in plants: engineering strategies and tools, Methods Enzymol., 617, 413–442, doi:  https://doi.org/10.1016/bs.mie.2018.12.005.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Baku State University, Department of Biophysics and Molecular BiologyBakuAzerbaijan

Personalised recommendations