Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 870–883 | Cite as

The Role of Reverse Transcriptase in the Origin of Life

  • R. N. MustafinEmail author
  • E. K. Khusnutdinova
Review

Abstract

It has been suggested that RNA polymerase ribozyme displaying reverse transcriptase and integrase activities has played a vital role in the origin of life on Earth. Here, we present a hypothesis that formation of universal ancestral units of all living organisms — retroelements — in the evolution was mediated by reverse transcriptase. The propensity of retroelements to mutations and their insertion capacity have formed a basis for the origin of complex DNA structures — primary genomes — that have given rise to archaea, eukaryotes, bacteria, and viruses. Conserved properties of retroelements have been preserved throughout the evolution; their modifications have facilitated the emergence of mechanisms for the interactions between proteins and nucleic acids. Life has evolved due to insertional mutagenesis and competition of autonomously replicating polynucleotides that allowed to preserve structures with adaptive properties. We hypothesize that natural selection of mechanisms for the defense against insertions based on the ribonuclease activity of reverse transcriptase ribozyme has led to the emergence of all universal enzymatic systems for the processing of RNA molecules. These systems have been and still remain the key sources of structural and functional transformations of genomes in the course of evolution. The data presented in this review suggest that the process of translation, which unifies the nucleic acid and protein worlds, has developed as a modification of the defense mechanisms against insertions. Polypeptides formed by this defense system have potentiated the activity of ribozymes in the composition of ribonucleoproteins (RNPs) and even functionally replaced them as more efficient catalysts of biological reactions. Here, we analyze the mechanisms of retroelement involvement in the structural and regulatory transformations of eukaryotic genomes supposedly reflecting the adaptive principles that had originated during the beginning of life on Earth. Simultaneously with the evolution of existing proteins, retroelements have served as sources of new ribozymes, such as long non-coding RNAs. These ribozymes can function in complexes with proteins in the composition of RNPs, as well as display independent catalytic and translational activities; their genes have a potential for the transformation into protein-coding genes. Hence, the conserved principles of RNA, DNA, and proteins interregulation formed at the time of life origin on Earth have been used throughout the evolution.

Keywords

reverse transcriptase polymerase processing ribozymes retroelements transposable elements evolution 

Abbreviations

CRISPR

clustered regularly interspaced short palindromic repeat

LINE

long interspersed nuclear element

LTR

long terminal repeat

ncRNA

non-coding RNA

non-LTR-RE

retroelement not containing long terminal repeats

RE

retroelement

RISC

RNA-induced silencing complex

RNAi

RNA interference

RNP

ribonucleoprotein

RT

reverse transcriptase

SINE

short interspersed nuclear element

snoRNA

small nucleolar RNA

snRNA

small nuclear RNA

TE

transposable element

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Lincoln, T. A., and Joyce, G. F. (2009) Self-sustained replication of an RNA enzyme, Science, 323, 1229–1232; doi:  https://doi.org/10.1126/science.1167856.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wochner, A., Attwater, J., Coulson, A., and Holliger, P. (2011) Ribozyme-catalyzed transcription of an active ribozyme, Science, 332, 209–212; doi:  https://doi.org/10.1126/science.1200752.CrossRefPubMedGoogle Scholar
  3. 3.
    Horning, D. P., and Joyce, G. F. (2016) Amplification of RNA by an RNA polymerase ribozyme, Proc. Natl Acad. Sci. USA, 113, 9786–9791; doi:  https://doi.org/10.1073/pnas.1610103113.CrossRefPubMedGoogle Scholar
  4. 4.
    Kreysing, M., Keil, L., Lanzmich, S., and Braun, D. (2015) Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length, Nat. Chem., 7, 203–208; doi:  https://doi.org/10.1038/nchem.2155.CrossRefPubMedGoogle Scholar
  5. 5.
    Betts, H. C., Puttick, M. N., Clark, J. W., Williams T. A., Donoghue, P. C. J., and Pisani, D. (2018) Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin, Nat. Ecol. Evol., 2, 1556–1562; doi:  https://doi.org/10.1038/s41559-018-0644-x.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 31, 147–157.CrossRefPubMedGoogle Scholar
  7. 7.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme, Cell, 35, 849–857.CrossRefPubMedGoogle Scholar
  8. 8.
    Prody, G. A., Bakos, J. T., Buzayan, J. M., Schneider, I. R., and Bruening, G. (1986) Autolytic processing of dimeric plant virus satellite RNA, Science, 231, 1577–1580.CrossRefPubMedGoogle Scholar
  9. 9.
    De la Pena, M., Garcia-Robles, I., and Cervera, A. (2017) The hammerhead ribozyme: a long history for a short RNA, Molecules, 22, E78; doi:  https://doi.org/10.3390/molecules22010078.CrossRefPubMedGoogle Scholar
  10. 10.
    Levine, M. T., Jones, C. D., Kern, A. D., Lindfors, H. A., and Begun, D. J. (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression, Proc. Natl. Acad. Sci. USA, 103, 9935–9939.CrossRefPubMedGoogle Scholar
  11. 11.
    Cai, J., Zhao, R., Jiang, H., and Wang, W. (2008) De novo origination of a new protein-coding gene in Saccharomyces cerevisiae, Genetics, 179, 487–496; doi:  https://doi.org/10.1534/genetics.107.084491.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xie, C., Zhang, Y. E., Chen, J. Y., Liu, C. J., Zhou, W. Z., Li, Y., Zhang, M., Zhang, R., Wei, L., and Li, C. Y. (2012) Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs, PLoS Genet., 8, e1002942; doi:  https://doi.org/10.1371/journal.pgen.1002942.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ruiz-Orera, J., Messeguer, X., Subirana, J. A., and Alba, M. M. (2014) Long non-coding RNAs as a source of new peptide, Elife, 3, e03523; doi:  https://doi.org/10.7554/eLife.03523.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Johnson, R., and Guigo, R. (2014) The RIDL hypothesis: transposable elements as functional domains of long non-coding RNAs, RNA, 20, 959–976; doi:  https://doi.org/10.1261/rna.044560.114.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kapusta, A., and Feschotte, C. (2014) Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications, Trends Genet., 30, 439–452; doi:  https://doi.org/10.1016/j.tig.2014.08.004.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lukash, L. L. (2007) Mutagenesis induced by integration processes and evolution of nuclear genome, Biopolym. Cell, 23, 172–187.CrossRefGoogle Scholar
  17. 17.
    Samanta, B., and Joyce, G. F. (2017) A reverse transcriptase ribozyme, Elife, 6, e31153; doi:  https://doi.org/10.7554/eLife.31153.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Qu, G., Kaushal, P. S., Wang, J., Shigematsu, H., Piazza, C. L., Agrawal, R. K., Belfort, M., and Wang, H. W. (2016) Structure of a group II intron in complex with its reverse transcriptase, Nat. Struct. Mol. Biol., 23, 549–557; doi:  https://doi.org/10.1038/nsmb.3220.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hughes, S. H. (2015) Reverse transcription of retroviruses and LTR retrotransposons, Microbiol. Spectr., 3, MDNA3-0027-2014; doi:  https://doi.org/10.1128/microbiolspec.MDNA3-0027-2014.
  20. 20.
    Moelling, K., and Broecker, F. (2015) The reverse transcriptase-RNase H: from viruses to antiviral defense, Ann. N. Y. Acad. Sci., 1341, 126–135; doi:  https://doi.org/10.1111/nyas.12668.CrossRefPubMedGoogle Scholar
  21. 21.
    Gogolevsky, K. P., Vassetzky, N. S., and Kramerov, D. A. (2009) 5S rRNA-derived and tRNA-derived SINEs in fruit bats, Genomics, 93, 494–500; doi:  https://doi.org/10.1016/j.ygeno.2009.02.001.CrossRefPubMedGoogle Scholar
  22. 22.
    Rosenbland, M. A., Larsen, N., Samuelsson, T., and Zwieb, C. (2009) Kinship in the SRP RNA family, RNA Biol., 6, 508–516.CrossRefGoogle Scholar
  23. 23.
    Li, Z., Ender, C., Meister, G., Moore, P. S., Chang, Y., and John, B. (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs, Nucleic Acids Res., 40, 6787–6799; doi:  https://doi.org/10.1093/nar/gks307.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kojima, K. K. (2015) A new class of SINEs with snRNA gene-derived heads, Genome Biol. Evol., 7, 1702–1712; doi:  https://doi.org/10.1093/gbe/evv100.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martinez, G., Choudury, S. G., and Slotkin, R. K. (2017) tRNA-derived small RNAs target transposable element transcripts, Nucleic Acids Res., 45, 5142–5152; doi:  https://doi.org/10.1093/nar/gkx103.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Startek, M. P., Nogly, J., Gromadka, A., Grzebelus, D., and Gambin, A. (2017) Inferring transposons activity chronology by TRANAcendence-TEs database and de novo mining tool, BMC Bioinformatics, 18, 422; doi:  https://doi.org/10.1186/s12859-017-1824-4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alzohairy, A. M., Gyulai, G., Jansen, R. K., and Bahieldin, A. (2013) Transposable elements domesticated and neofunctionalized by eukaryotic genomes, Plasmid, 69, 1–15; doi:  https://doi.org/10.1016/j.plasmid.2012.08.001.CrossRefPubMedGoogle Scholar
  28. 28.
    Kramerov, D. A., and Vassetzky, N. S. (2011) Origin and evolution of SINEs in eukaryotic genomes, Heredity (Edinb.), 107, 487–495; doi:  https://doi.org/10.1038/hdy.2011.43.CrossRefGoogle Scholar
  29. 29.
    Kapitonov, V. V., and Jurka, J. (2003) A novel class of SINE elements derived from 5S rRNA, Mol. Biol. Evol., 20, 694–702.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang, J., Wang, A., Han, Z., Zhang, Z., Li, F., and Li, X. (2012) Characterization of three novel SINE families with unusual features in Helicoverpa armigera, PLoS One, 7, e31355; doi:  https://doi.org/10.1371/journal.pone.0031355.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Longo, M. S., Brown, J. D., Zhang, C., O’Neill, M. J., and O’Neill, R. J. (2015) Identification of a recently active mammalian SINE derived from ribosomal RNA, Genome Biol. Evol., 7, 775–788; doi:  https://doi.org/10.1093/gbe/evv015.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., and Schulman, A. H. (2007) A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 8, 973–982.CrossRefPubMedGoogle Scholar
  33. 33.
    Abrusan, G., Zhang, Y., and Szilagyi, A. (2013) Structure prediction and analysis of DNA transposon and LINE retrotransposons proteins, J. Biol. Chem., 288, 16127–16138; doi:  https://doi.org/10.1074/jbc.M113.451500.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rice, P. A., and Baker, T. A. (2001) Comparative architecture of transposase and integrase complexes, Nat. Struct. Biol., 8, 302–307.CrossRefPubMedGoogle Scholar
  35. 35.
    Wolkowicz, U. M., Morris, E. R., Robson, M., Trubitsyna, M., and Richardson, J. M. (2014) Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir, ACS Chem. Biol., 9, 743–751; doi:  https://doi.org/10.1021/cb400791u.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nowotny, M., Gaidamakov, S. A., Crouch, R. J., and Yang, W. (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis, Cell, 121, 1005–1016.CrossRefPubMedGoogle Scholar
  37. 37.
    De Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A., and Polock, D. D. (2011) Repetitive elements may comprise over two-thirds of the human genome, PloS Genet., 7, e1002384; doi:  https://doi.org/10.1371/journal.pgen.1002384.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Goerner-Potvin, P., and Bourque, G. (2018) Computational tools to unmask transposable elements, Nat. Rev. Genet., 19, 688–704; doi:  https://doi.org/10.1038/s41576-018-0050-x.CrossRefPubMedGoogle Scholar
  39. 39.
    Ellefson, J. W., Gollihar, J., Shoroff, R., Shivram, H., Lyer, V. R., and Ellington, A. D. (2016) Synthetic evolutionary origin of a proofreading reverse transcriptase, Science, 352, 1590–1593; doi:  https://doi.org/10.1126/science.aaf5409.CrossRefPubMedGoogle Scholar
  40. 40.
    Freeland, S. J., Knight, R. D., and Landweber, L. F. (1999) Do proteins predate DNA, Science, 286, 690–692.CrossRefPubMedGoogle Scholar
  41. 41.
    Baltimore, D. (1970) RNA-dependent DNA polymerase in virions of RNA tumour, Nature, 226, 1209–1211.CrossRefPubMedGoogle Scholar
  42. 42.
    Temin, H. M., and Mizutani, S. (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma, Nature, 226, 1211–1213.CrossRefPubMedGoogle Scholar
  43. 43.
    Lampson, B. C., Inouye, M., and Inouye, S. (1989) Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus, Cell, 56, 701–707.CrossRefPubMedGoogle Scholar
  44. 44.
    Lim, D., and Maas, W. K. (1989) Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B, Cell, 56, 891–904.CrossRefPubMedGoogle Scholar
  45. 45.
    Toro, N., Martinez-Abarca, F., and Gonzalez-Delgado, A. (2017) The reverse transcriptases associated with CRISPR-Cas systems, Sci. Rep., 7, 7089; doi:  https://doi.org/10.1038/s41598-017-07828-y.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ekland, E. H., and Bartel, D. P. (1996) RNA-catalyzed RNA polymerization using nucleoside triphosphates, Nature, 382, 373–376.CrossRefPubMedGoogle Scholar
  47. 47.
    Been, M. D., and Cech, T. R. (1988) RNA as an RNA polymerase: net elongation of an RNA primer catalyzed by the Tetrahymena ribozyme, Science, 239, 1412–1416.CrossRefPubMedGoogle Scholar
  48. 48.
    Adamala, K., Engelhart, A. E., and Szostak, J. W. (2015) Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension, J. Am. Chem. Soc., 137, 483–489.CrossRefPubMedGoogle Scholar
  49. 49.
    Braun, V., Mehlig, M., Moos, M., Rupnik, M., Kalt, B., Mahony, D. E., and von Eichel-Streiber, C. (2000) A chimeric ribozyme in clostridium difficile combines features of group I introns and insertion elements, Mol. Microbiol., 36, 1447–1459.CrossRefPubMedGoogle Scholar
  50. 50.
    Gao, X., and Voytas, D. F. (2005) A eukaryotic gene family related to retroelements integrases, Trends Genet., 21, 133–137.CrossRefPubMedGoogle Scholar
  51. 51.
    Skala, A. M. (2014) Retroviral DNA transposition: themes and variations, Microbiol. Spectr., 2; doi:  https://doi.org/10.1128/microbiolspec.MDNA3-0005-2014.
  52. 52.
    Zeng, L., Pederson, S. M., Cao, D., Qu, Z., Hu, Z., Adelson, D. L., and Wei, C. (2018) Genome-wide analysis of the association of transposable elements with gene regulation suggests that alu elements have the largest overall regulatory impact, J. Comput. Biol., 25, 551–562; doi:  https://doi.org/10.1089/cmb.2017.0228.CrossRefPubMedGoogle Scholar
  53. 53.
    Ren, Y. F., Li, G., Wu, J., Xue, Y. F., Song, Y. J., Lv, L., Zhang, X. J., and Tang, K. F. (2012) Dicer-dependent biogenesis of small RNAs derived from 7SL RNA, PLoS One, 7, e40705; doi:  https://doi.org/10.1371/journal.pone.0040705.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jacob, M. D., Audas, T. E., Mullineux, S. T., and Lee, S. (2012) Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal intergenic spacer, Nucleus, 3, 315–319.CrossRefPubMedGoogle Scholar
  55. 55.
    Kumar, P., Anaya, J., Mudunuri, S. B., and Dutta, A. (2014) Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets, BMC Biol., 12, 78; doi:  https://doi.org/10.1186/s12915-014-0078-0.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ender, C., Krek, A., Friedlander, M. R., Beitzinger, M., Weinmann, L., Chen, W., Pferffer, S., Rajewsky, N., and Meister, G. (2008) A human snoRNA with microRNA-like functions, Mol. Cell., 32, 519–528; doi:  https://doi.org/10.1016/j.mol-cel.2008.10.017.CrossRefPubMedGoogle Scholar
  57. 57.
    Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P., and Mattick, J. S. (2009) Small RNAs derived from snoRNAs, RNA, 15, 1233–1240; doi:  https://doi.org/10.1261/rna.1528909.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Venkatesh, T., Suresh, P. S., and Tsutsumi, R. (2016) tRFs: miRNAs in disguise, Gene, 579, 133–138; doi:  https://doi.org/10.1016/j.gene.2015.12.058.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou, J., Ding, D., Wang, M., and Cong, Y. S. (2014) Telomerase reverse transcriptase in the regulation of gene expression, BMB Rep., 47, 8–14.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Elliott, T. A., Stage, D. E., Crease, T. J., and Eickbush, T. H. (2013) In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome, Mob. DNA, 4, 20; doi:  https://doi.org/10.1186/1759-9753-4-20.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jamburuthugoda, V. K., and Eickbush, T. H. (2014) Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase, Nucleic Acids Res., 42, 8405–8415; doi:  https://doi.org/10.1093/nar/gku514.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Novikova, O., and Belfort, M. (2017) Mobile group II introns as ancestral eukaryotic elements, Trends Genet., 33, 773–783; doi:  https://doi.org/10.1016/j.tig.2017.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang, D., Su, Y., Wang, X., Lei, H., and Yu, J. (2012) Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in mammalian intron size expansion, Evol. Bioinform. Online, 8, 301–319; doi:  https://doi.org/10.4137/EBO.S9758.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Yenerall, P., and Zhou, L. (2012) Identifying the mechanisms of intron gain: progress and trends, Biol. Direct., 7, 29; doi:  https://doi.org/10.1186/1745-6150-7-29.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Feschotte, C. (2008) The contribution of transposable elements to the evolution of regulatory networks, Nat. Rev. Genet., 9, 397–405.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tajnik, M., Vigilante, A., Braun, S., Hanel, H., Luscombe, N. M., Ule, J., Zarnack, K., and Koning, J. (2015) Intergenic Alu exonization facilitates the evolution of tissue-specific transcript ends, Nucleic Acids Res., 43, 10492–10505; doi:  https://doi.org/10.1093/nar/gkv956.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Lei, H., and Vorechovsky, I. (2005) Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression, Mol. Cell. Biol., 25, 6912–6920.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pastor, T., Talotti, G., Lewandowska, M. A., and Pagani, F. (2009) An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM, Nucleic Acids Res., 37, 7258–7267; doi:  https://doi.org/10.1093/nar/gkp778.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Galej, W. P., Oubridge, C., Newman, A. J., and Nagai, K. (2013) Crystal structure of Prp8 reveals active site cavity of the spliceosome, Nature, 493, 638–643; doi:  https://doi.org/10.1038/nature11843.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rearick, D., Prakash, A., McSweeny, A., Shepard, S. S., Fedorova, L., and Fedorov, A. (2011) Critical association of ncRNA with introns, Nucleic Acids Res., 39, 2357–2366; doi:  https://doi.org/10.1093/nar/gkq1080.CrossRefPubMedGoogle Scholar
  71. 71.
    Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis, Science, 289, 920–930.CrossRefPubMedGoogle Scholar
  72. 72.
    Zimmerly, S., and Wu, L. (2015) An unexplored diversity of reverse transcriptases in bacteria, Microbiol. Spectr., 3, MDNA3-0058-2014; doi:  https://doi.org/10.1128/microbiolspec.MDNA3-0058-2014.
  73. 73.
    Ravin, N. V., and Shestakov, S. V. (2013) Genome of prokaryotes, Vavilov Zh. Genet. Selekts., 17, 972–984.Google Scholar
  74. 74.
    Liu, M., Deora, R., Doulatov, S. R., Gingery, M., Eiserling, F. A., Preston, A., Maskell, D. J., Simons, R. W., Cotter, P. A., Parkhill, J., and Miller, J. F. (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage, Science, 295, 2091–2094.CrossRefPubMedGoogle Scholar
  75. 75.
    Toro, N., Martinez-Abarca, F., Gonzalez-Delgado, A., and Mestre, M. R. (2018) On the origin and evolutionary relationships of the reverse transcriptases associated with type III CRISPR-Cas systems, Front. Mircrobiol., 9, 1317; doi:  https://doi.org/10.3389/fmicb.2018.01317.CrossRefGoogle Scholar
  76. 76.
    Lambowitz, A. M., and Zimmerly, S. (2011) Group II introns: mobile ribozymes that invade DNA, Cold Spring Harb. Perspect. Biol., 3, a003616; doi:  https://doi.org/10.1101/cshperspect.a003616.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Peebles, C. L., Perlman, P. C., Mecklenburg, K. L., Petrillo, M. L., Tabor, J. H., Jarrell, K. A., and Cheng, H. L. (1986) A self-splicing RNA excises an intron lariat, Cell, 44, 213–223.CrossRefPubMedGoogle Scholar
  78. 78.
    Silas, S., Mohr, G., Sidote, D. J., Markham, L. M., Sanchez-Amat, A., Bhaya, D., Lambowitz, A. M., and Fire, A. Z. (2016) Direct CRISPR spacer acquisition from RNA by natural reverse transcriptase—Cas1 fusion protein, Science, 351, aad4234; doi:  https://doi.org/10.1126/science.aad4234.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Elliott, T. A., and Greqory, T. R. (2015) Do larger genomes contain more diverse transposable elements? BMC Evol. Biol., 15, 69–81; doi:  https://doi.org/10.1186/s12862-015-0339-8.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kubiak, M. R., and Makalowska, I. (2017) Protein-coding genes’ retrocopies and their functions, Viruses, 9, E80; doi:  https://doi.org/10.3390/v9040080.CrossRefPubMedGoogle Scholar
  81. 81.
    Zdobnov, E. M., Campillos, M., Harrington, E. D., Torrents, D., and Bork, P. (2005) Protein coding potential of retroviruses and other transposable elements in vertebrate genomes, Nucleic Acids Res., 33, 946–954.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Campillos, M., Doerks, T., Shah, P. K., and Bork, P. (2006) Computational characterization of multiple Gag-like human protein, Trends Genet., 22, 585–589.CrossRefPubMedGoogle Scholar
  83. 83.
    Sela, N., Kim, E., and Ast, G. (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates, Genome Biol., 11, R59; doi:  https://doi.org/10.1186/gb-2010-11-6-r59.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Schmitz, J., and Brosius, J. (2011) Exonization of transposed elements: a challenge and opportunity for evolution, Biochimie, 93, 1928–1934; doi:  https://doi.org/10.1016/j.biochi.2011.07.014.CrossRefPubMedGoogle Scholar
  85. 85.
    Cheng, Z. J., and Murata, M. (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives, Genetics, 164, 665–672.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kipling, D., and Warburton, P. E. (1997) Centromeres, CENP-B and Tigger too, Trends Genet., 13, 141–145.CrossRefPubMedGoogle Scholar
  87. 87.
    Mestrovic, N., Mravinac, B., Pavlek, M., Vojvoda-Zeljko, T., Satovic, E., and Plohl, M. (2015) Structural and functional liaisons between transposable elements and satellite DNAs, Chromosome Res., 23, 583–596; doi:  https://doi.org/10.1007/s10577-015-9483-7.CrossRefPubMedGoogle Scholar
  88. 88.
    Arkhipova, I. R. (2018) Neutral theory, transposable elements, and eukaryotic genome evolution, Mol. Biol. Evol., 35, 1332–1337; doi:  https://doi.org/10.1093/molbev/msy083.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Garavis, M., Gonzalez, C., and Villasante, A. (2013) On the origin of the eukaryotic chromosome: the role of non-canonical DNA structures in telomere evolution, Genome Biol. Evol., 5, 1142–1150; doi:  https://doi.org/10.1093/gbe/evt079.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    De Souza, F. S., Franchini, L. F., and Rubinstein, M. (2013) Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong, Mol. Biol. Evol., 30, 1239–1251; doi:  https://doi.org/10.1093/molbev/mst045.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Gim, J., Ha, H., Ahn, K., Kim, D. S., and Kim, H. S. (2014) Genome-wide identification and classification of microRNAs derived from repetitive elements, Genomic Inform., 12, 261–267; doi:  https://doi.org/10.5808/GI.2014.12.4.261.CrossRefGoogle Scholar
  92. 92.
    Long, Y., Wang, X., Youmans, D. T., and Cech, T. R. (2017) How do lncRNAs regulate transcription? Sci. Adv., 3, eaao2110; doi:  https://doi.org/10.1126/sciadv.aao2110.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Lu, X., Sachs, F., Ramsay, L., Jacques, P. E., Goke, J., Bourque, G., and Ng, H. H. (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 21, 423–425; doi:  https://doi.org/10.1038/nsmb.2799.CrossRefPubMedGoogle Scholar
  94. 94.
    Honson, D. D., and Macfarlan, T. S. (2018) A lncRNA-like role for LINE1s in development, Dev. Cell, 46, 132–134; doi:  https://doi.org/10.1016/j.devcel.2018.06.022.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Anderson, D. M., Anderson, K. M., Cang, C. L., Makarewich, C. A., Nelson, B. R., McAnally, J. R., Kasaragod, P., Shelton, J. M., Liou, J., Bassel-Duby, R., and Olson, E. N. (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 160, 595–606; doi:  https://doi.org/10.1016/j.cell.2015.01.009.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chuong, E. B., Elde, N. C., and Feschotte, C. (2017) Regulatory activities of transposable elements: from conflicts to benefits, Nat. Rev. Genet., 18, 71–86; doi:  https://doi.org/10.1038/nrg.2016.139.CrossRefPubMedGoogle Scholar
  97. 97.
    Fontdevila, A. (2005) Hybrid genome evolution by transposition, Cytogenet. Genome Res., 110, 49–55.CrossRefPubMedGoogle Scholar
  98. 98.
    Soemedi, R., Cygan, K. J., Rhine, C. L., Glidden, D. T., Taggart, A. J., Lin, C. L., Fredericks, A. M., and Fairbrother, W. G. (2017) The effects of structure on pre-mRNA processing and stability, Methods, 125, 36–44; doi:  https://doi.org/10.1016/j.ymeth.2017.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Kralovicova, J., Patel, A., Searle, M., and Vorechovsky, I. (2015) The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat, RNA Biol., 12, 54–69, doi:  https://doi.org/10.1080/15476286.2015.1017207.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Khavinson, V. Kh., Solovyov, A. Yu., and Shataeva, L. K. (2006) Molecular mechanism of interaction between oligopeptides and double-stranded DNA, Bul. Exp. Biol. Med., 141, 457–461; doi:  https://doi.org/10.1007/s10517-006-0198-9.CrossRefGoogle Scholar
  101. 101.
    Gladyshev, E. A., and Arkhipova, I. R. (2011) A wide-spread class of reverse transcriptase-related cellular genes, Proc. Natl. Acad. Sci. USA, 108, 20311–20316; doi:  https://doi.org/10.1073/pnas.1100266108.CrossRefPubMedGoogle Scholar
  102. 102.
    Kim, S., and Choi, D. (2018) New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants, BMB Rep., 51, 55–56.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Zhang, H., Tao, Z., Hong, H., Chen, Z., Wu, C., Li, X., Xiao, J., and Wang, S. (2016) Transposon-derived small RNA is responsible for modified function of WRKY45 locus, Nat. Plants, 2, 16016–16023; doi:  https://doi.org/10.1038/nplants.2016.16.CrossRefPubMedGoogle Scholar
  104. 104.
    Trizzino, M., Kapusta, A., and Brown, C. D. (2018) Transposable elements generate regulatory novelty in a tissue-specific fashion, BMC Genomics, 19, 468; doi:  https://doi.org/10.1186/s12864-018-4850-3.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Vinogradov, A. E. (2011) Base Function of Genome Structure of Eukaryotes: Doctoral (Biol.) dissertation [in Russian], St. Petersburg.Google Scholar
  106. 106.
    Joly-Lopez, Z., and Bureau, T. E. (2018) Exaptation of transposable element coding sequences, Curr. Opin. Genet. Dev., 49, 34–42; doi:  https://doi.org/10.1016/j.gde.2018.02.011.CrossRefPubMedGoogle Scholar
  107. 107.
    Duan, C. G., Wang, X., Pan, L., Miki, D., Tang, K., Hsu, C. C., Lei, M., Zhong, Y., Hou, Y. J., Wang, Z., Zhang, Z., Mangrauthia, S. K., Xu, H., Zhang, H., Dilkes, B., Tao, W. A., and Zhu, J. K. (2017) A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation, Cell Res., 27, 226–240; doi:  https://doi.org/10.1038/cr.2016.147.CrossRefPubMedGoogle Scholar
  108. 108.
    Sinzelle, L., Izsvak, Z., and Ivics, Z. (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes, Cell. Mol. Life Sci., 66, 1073–1093; doi:  https://doi.org/10.1007/s00018-009-8376-3.CrossRefPubMedGoogle Scholar
  109. 109.
    Wang, J., Vicente-Garcia, C., Seruggia, D., Molto, E., Fernandez-Minan, A., Neto, A., Lee, E., Gomez-Skarmeta, J. L., Montoliu, L., Lunyak, V. V., and Jordan, I. K. (2015) MIR retrotransposons sequences provide insulators to the human genome, Proc. Natl. Acad. Sci. USA, 112, 4428–4437; doi:  https://doi.org/10.1073/pnas.1507253112 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Bashkir State Medical UniversityUfaRussia
  2. 2.Institute of Biochemistry and GeneticsUfa Federal Research Center of the Russian Academy of SciencesUfaRussia

Personalised recommendations