Advertisement

Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance

Abstract

Thiamine (vitamin B1) is a precursor of the well-known coenzyme of central metabolic pathways thiamine diphosphate (ThDP). Highly intense glucose oxidation in the brain requires ThDP-dependent enzymes, which determines the critical significance of thiamine for neuronal functions. However, thiamine can also act through the non-coenzyme mechanisms. The well-known facilitation of acetylcholinergic neurotransmission upon the thiamine and acetylcholine co-release into the synaptic cleft has been supported by the discovery of thiamine triphosphate (ThTP)-dependent phosphorylation of the acetylcholine receptor-associated protein rapsyn, and thiamine interaction with the TAS2R1 receptor, resulting in the activation of synaptic ion currents. The non-coenzyme regulatory binding of thiamine compounds has been demonstrated for the transcriptional regulator p53, poly(ADP-ribose) polymerase, prion protein PRNP, and a number of key metabolic enzymes that do not use ThDP as a coenzyme. The accumulated data indicate that the molecular mechanisms of the neurotropic action of thiamine are far broader than it has been originally believed, and closely linked to the metabolism of thiamine and its derivatives in animals. The significance of this topic has been illustrated by the recently established competition between thiamine and the antidiabetic drug metformin for common transporters, which can be the reason for the thiamine deficiency underlying metformin side effects. Here, we also discuss the medical implications of the research on thiamine, including the role of thiaminases in thiamine reutilization and biosynthesis of thiamine antagonists; molecular mechanisms of action of natural and synthetic thiamine antagonists, and biotransformation of pharmacological forms of thiamine. Given the wide medical application of thiamine and its synthetic forms, these aspects are of high importance for medicine and pharmacology, including the therapy of neurodegenerative diseases.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Abbreviations

AThDP:

adenylated thiamine diphosphate

AThTP:

adenylated thiamine triphosphate

OGDHC:

2-oxo-glutarate dehydrogenase complex

PARP:

poly(ADP-ribose) polymerase

PDHC:

pyruvate dehydrogenase complex

ThDP:

thiamine diphosphate

ThDPase:

thiamine diphosphatase

ThMP:

thiamine monophosphate

ThMPase:

thiamine monophosphatase

ThTP:

thiamine triphosphate

ThTPase:

thiamine triphosphatase

References

  1. 1.

    Stepuro, I. I., Oparin, A. Y., Stsiapura, V. I., Maskevich, S. A., and Titov, V. Y. (2012) Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide, Biochemistry (Moscow), 77, 41–55, doi: https://doi.org/10.1134/S0006297912010051.

  2. 2.

    Parkhomenko, Y. M., Donchenko, G. V., Chehovskaya, L. I., Stepanenko, S. P., Mejenskaya, O. A., and Gorban, E. N. (2015) Metovitan prevents accumulation of thiamin diphosphate oxygenized form in rat tissues under irradiation, Biotechnol. Acta, 8, 63–70, doi: https://doi.org/10.15407/biotech8.04.063.

  3. 3.

    Coy, J. F., Dressler, D., Wilde, J., and Schubert, P. (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer, Clin. Lab., 51, 257–273.

  4. 4.

    Langbein, S., Zerilli, M., Zur Hausen, A., Staiger, W., Rensch-Boschert, K., Lukan, N., Popa, J., Ternullo, M. P., Steidler, A., Weiss, C., Grobholz, R., Willeke, F., Alken, P., Stassi, G., Schubert, P., and Coy, J. F. (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted, Br. J. Cancer, 94, 578–585, doi: https://doi.org/10.1038/sj.bjc.6602962.

  5. 5.

    Meshalkina, L. E., Drutsa, V. L., Koroleva, O. N., Solovjeva, O. N., and Kochetov, G. A. (2013) Is transketolase-like protein, TKTL1, transketolase? Biochim. Biophys. Acta, 1832, 387–390, doi: https://doi.org/10.1016/j.bbadis.2012.12.004.

  6. 6.

    Bunik, V. (2017) Vitamin-Dependent Multienzyme Complexes of 2-Oxo Acid Dehydrogenases: Structure, Function, Regulation and Medical Implications, Nova Science Publishers, NY.

  7. 7.

    Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412–6442, doi: https://doi.org/10.1111/febs.12512.

  8. 8.

    Bunik, V. I., Denton, T. T., Xu, H., Thompson, C. M., Cooper, A. J., and Gibson, G. E. (2005) Phosphonate analogues of a-ketoglutarate inhibit the activity of the α-keto-glutarate dehydrogenase complex isolated from brain and in cultured cells, Biochemistry, 44, 10552–10561, doi: https://doi.org/10.1021/bi0503100.

  9. 9.

    Liu, D., Ke, Z., and Luo, J. (2017) Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy, Mol. Neurobiol., 54, 5440–5448, doi: https://doi.org/10.1007/s12035-016-0079-9.

  10. 10.

    Bunik, V. I., and Aleshin, V. A. (2017) Analysis of the protein binding sites for thiamin and its derivatives to elucidate the molecular mechanisms of the noncoenzyme action of thiamin (vitamin B1), Studies Nat. Prod. Chem., 53, 375–429, doi: https://doi.org/10.1016/b978-0-444-63930-1.00011-9.

  11. 11.

    Bunik, V. I. (2014) Benefits of thiamin (vitamin B1) administration in neurodegenerative diseases may be due to both the coenzyme and non-coenzyme roles of thiamin, J. Alzheimers Dis. Parkinsonism, 4, 173, doi: https://doi.org/10.4172/2161-0460.1000173.

  12. 12.

    Gibson, G. E., Blass, J. P., Beal, M. F., and Bunik, V. (2005) The α-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration, Mol. Neurobiol., 31, 43–63, doi: https://doi.org/10.1385/MN:31:1-3:043.

  13. 13.

    Costantini, A., Giorgi, R., D’Agostino, S., and Pala, M. I. (2013) High-dose thiamine improves the symptoms of Friedreich’s ataxia, BMJ Case Rep., 2013, bcr2013009424, doi: https://doi.org/10.1136/bcr-2013-009424.

  14. 14.

    Costantini, A., and Fancellu, R. (2016) An open-label pilot study with high-dose thiamine in Parkinson’s disease, Neural Regen. Res., 11, 406–407, doi: https://doi.org/10.4103/1673-5374.179047.

  15. 15.

    Snodgrass, S. R. (1992) Vitamin neurotoxicity, Mol. Neurobiol., 6, 41–73, doi: https://doi.org/10.1007/bf02935566.

  16. 16.

    Lonsdale, D. (2006) A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives, Evid. Based Complement Alternat. Med., 3, 49–59, doi: https://doi.org/10.1093/ecam/nek009.

  17. 17.

    Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., and Xu, T. L. (2010) Powerful beneficial effects of benfotiamine on cognitive impairment and β-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice, Brain, 133, 1342–1351, doi: https://doi.org/10.1093/brain/awq069.

  18. 18.

    Bettendorff, L., and Wins, P. (1999) Thiamine derivatives in excitable tissues: metabolism, deficiency and neurodegenerative diseases, Rec. Res. Devel. Neurochem., 2, 37–62.

  19. 19.

    Gangolf, M., Czerniecki, J., Radermecker, M., Detry, O., Nisolle, M., Jouan, C., Martin, D., Chantraine, F., Lakaye, B., Wins, P., Grisar, T., and Bettendorff, L. (2010) Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells, PLoS One, 5, e13616, doi: https://doi.org/10.1371/journal.pone.0013616.

  20. 20.

    Frederich, M., Delvaux, D., Gigliobianco, T., Gangolf, M., Dive, G., Mazzucchelli, G., Elias, B., De Pauw, E., Angenot, L., Wins, P., and Bettendorff, L. (2009) Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence, FEBS J., 276, 3256–3268, doi: https://doi.org/10.1111/j.1742-4658.2009.07040.x.

  21. 21.

    Bocobza, S. E., Malitsky, S., Araujo, W. L., Nunes-Nesi, A., Meir, S., Shapira, M., Fernie, A. R., and Aharoni, A. (2013) Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis, Plant Cell, 25, 288–307, doi: https://doi.org/10.1105/tpc.112.106385.

  22. 22.

    Kim, S., Rhee, J. K., Yoo, H. J., Lee, H. J., Lee, E. J., Lee, J. W., Yu, J. H., Son, B. H., Gong, G., Kim, S. B., Singh, S. R., Ahn, S. H., and Chang, S. (2015) Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer, Cancer Lett., 357, 488–497, doi: https://doi.org/10.1016/j.canlet.2014.11.058.

  23. 23.

    McLure, K. G., Takagi, M., and Kastan, M. B. (2004) NAD+ modulates p53 DNA binding specificity and function, Mol. Cell Biol., 24, 9958–9967, doi: 10.1128/MCB.24.22.9958-9967.2004.

  24. 24.

    Lo, P. K., Chen, J. Y., Tang, P. P., Lin, J., Lin, C. H., Su, L. T., Wu, C. H., Chen, T. L., Yang, Y., and Wang, F. F. (2001) Identification of a mouse thiamine transporter gene as a direct transcriptional target for p53, J. Biol. Chem., 276, 37186–37193, doi: https://doi.org/10.1074/jbc.M104701200.

  25. 25.

    Cooper, J. R., Itokawa, Y., and Pincus, J. H. (1969) Thiamine triphosphate deficiency in subacute necrotizing encephalomyelopathy, Science, 164, 74–75, doi: https://doi.org/10.1126/science.164.3875.74.

  26. 26.

    Pincus, J. H., Solitare, G. B., and Cooper, J. R. (1976) Thiamine triphosphate levels and histopathology. Correlation in Leigh disease, Arch. Neurol., 33, 759–763, doi: https://doi.org/10.1001/archneur.1976.00500110027005.

  27. 27.

    Gigliobianco, T., Lakaye, B., Makarchikov, A. F., Wins, P., and Bettendorff, L. (2008) Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli, BMC Microbiol., 8, 16, doi: https://doi.org/10.1186/1471-2180-8-16.

  28. 28.

    Nghiem, H. O., Bettendorff, L., and Changeux, J. P. (2000) Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor, FASEB J., 14, 543–554, doi: https://doi.org/10.1096/fasebj.14.3.543.

  29. 29.

    Von Muralt, A. (1958) The role of thiamine (vitamin B1) in nerve excitation, Exp. Cell Res., 14, 72–79.

  30. 30.

    Minz, B. (1938) Sur la liberation de la vitamine B1 par le trone isole de nerf pneumogastrique soumis a l’exitation electrique, C. R. Soc. Biol., 127, 1251–1253.

  31. 31.

    Itokawa, Y., and Cooper, J. R. (1970) Ion movements and thiamine. II. The release of the vitamin from membrane fragments, Biochim. Biophys. Acta, 196, 274–284, doi: https://doi.org/10.1016/0005-2736(70)90015-5.

  32. 32.

    Tanaka, T., Yamamoto, D., Sato, T., Tanaka, S., Usui, K., Manabe, M., Aoki, Y., Iwashima, Y., Saito, Y., Mino, Y., and Deguchi, H. (2011) Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity, J. Nutr. Sci. Vitaminol. (Tokyo), 57, 192–196, doi: https://doi.org/10.3177/jnsv.57.192.

  33. 33.

    Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Di Salvo, M. L., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., and Bunik, V. (2015) Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis, Sci. Rep., 5, 12583, doi: https://doi.org/10.1038/srep12583.

  34. 34.

    Rindi, G., Patrini, C., Nauti, A., Bellazzi, R., and Magni, P. (2003) Three thiamine analogues differently alter thiamine transport and metabolism in nervous tissue: an in vivo kinetic study using rats, Metab. Brain Dis., 18, 245–263, doi: https://doi.org/10.1023/B:MEBR.0000020187.98238.58.

  35. 35.

    Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1989) Tissue difference in cellular localization of thiamine phosphate esters, Comp. Biochem. Physiol. B, 94, 405–409, doi: https://doi.org/10.1016/0305-0491(89)90364-7.

  36. 36.

    Bettendorff, L., Wins, P., and Lesourd, M. (1994) Subcellular localization and compartmentation of thiamine derivatives in rat brain, Biochim. Biophys. Acta, 1222, 1–6, doi: https://doi.org/10.1016/0167-4889(94)90018-3.

  37. 37.

    Gangolf, M., Wins, P., Thiry, M., El Moualij, B., and Bettendorff, L. (2010) Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain, J. Biol. Chem., 285, 583–594, doi: https://doi.org/10.1074/jbc.M109.054379.

  38. 38.

    Mayr, J. A., Freisinger, P., Schlachter, K., Rolinski, B., Zimmermann, F. A., Scheffner, T., Haack, T. B., Koch, J., Ahting, U., Prokisch, H., and Sperl, W. (2011) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway, Am. J. Hum. Genet., 89, 806–812, doi: https://doi.org/10.1016/j.ajhg.2011.11.007.

  39. 39.

    Banka, S., de Goede, C., Yue, W. W., Morris, A. A., von Bremen, B., Chandler, K. E., Feichtinger, R. G., Hart, C., Khan, N., Lunzer, V., Matakovic, L., Marquardt, T., Makowski, C., Prokisch, H., Debus, O., Nosaka, K., Sonwalkar, H., Zimmermann, F. A., Sperl, W., and Mayr, J. A. (2014) Expanding the clinical and molecular spectrum of thiamine pyrophosphokinase deficiency: a treatable neurological disorder caused by TPK1 mutations, Mol. Genet. Metab., 113, 301–306, doi: https://doi.org/10.1016/j.ymgme.2014.09.010.

  40. 40.

    Sano, S., Matsuda, Y., Miyamoto, S., and Nakagawa, H. (1984) Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain, Biochem. Biophys. Res. Commun., 118, 292–298, doi: https://doi.org/10.1016/0006-291X(84)91099-4.

  41. 41.

    Zebisch, M., Schafer, P., Lauble, P., and Strater, N. (2013) New crystal forms of NTPDase 1 from the bacterium Legionella pneumophila, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 69, 257–262, doi: https://doi.org/10.1107/S1744309113001504.

  42. 42.

    Rindi, G., Ricci, V., Gastaldi, G., and Patrini, C. (1995) Intestinal alkaline phosphatase can transphosphorylate thiamin to thiamin monophosphate during intestinal transport in the rat, Arch. Physiol. Biochem., 103, 33–38, doi: https://doi.org/10.3109/13813459509007560.

  43. 43.

    Zylka, M. J., Sowa, N. A., Taylor-Blake, B., Twomey, M. A., Herrala, A., Voikar, V., and Vihko, P. (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine, Neuron, 60, 111–122, doi: https://doi.org/10.1016/j.neuron.2008.08.024.

  44. 44.

    Hurt, J. K., Coleman, J. L., Fitzpatrick, B. J., Taylor-Blake, B., Bridges, A. S., Vihko, P., and Zylka, M. J. (2012) Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine, PLoS One, 7, e48562, doi: https://doi.org/10.1371/journal.pone.0048562.

  45. 45.

    Eckert, T., and Moebus, W. (1964) On the ATP thiaminediphosphate phosphotransferase activity in nerve tissue. A contribution on the mechanism of nerve impulse conduction, Hoppe Seylers’ Z. Physiol. Chem., 338, 286–288.

  46. 46.

    Nishino, K., Itokawa, Y., Nishino, N., Piros, K., and Cooper, J. R. (1983) Enzyme system involved in the synthesis of thiamin triphosphate. I. Purification and characterization of protein-bound thiamin diphosphate:ATP phosphoryltransferase, J. Biol. Chem., 258, 11871–11878.

  47. 47.

    Shioda, T., Yasuda, S., Yamada, K., Yamada, M., Nakazawa, A., and Kawasaki, T. (1993) Thiamin-triphosphate-synthesizing activity of mutant cytosolic adenylate kinases: significance of Arg-128 for substrate specificity, Biochim. Biophys. Acta, 1161, 230–234, doi: https://doi.org/10.1016/0167-4838(93)90218-G.

  48. 48.

    Makarchikov, A. F., Wins, P., Janssen, E., Wieringa, B., Grisar, T., and Bettendorff, L. (2002) Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels, Biochim. Biophys. Acta, 1592, 117–121, doi: https://doi.org/10.1016/S0167-4889(02)00277-X.

  49. 49.

    Shikata, H., Koyama, S., Egi, Y., Yamada, K., and Kawasaki, T. (1989) Cytosolic adenylate kinase catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate, Biochem. Int., 18, 933–941.

  50. 50.

    Bettendorff, L., Lakaye, B., Kohn, G., and Wins, P. (2014) Thiamine triphosphate: a ubiquitous molecule in search of a physiological role, Metab. Brain Dis., 29, 1069–1082, doi: https://doi.org/10.1007/s11011-014-9509-4.

  51. 51.

    Gigliobianco, T., Gangolf, M., Lakaye, B., Pirson, B., von Ballmoos, C., Wins, P., and Bettendorff, L. (2013) An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate, Sci. Rep., 3, 1071, doi: https://doi.org/10.1038/srep01071.

  52. 52.

    Makarchikov, A. F., and Chernikevich, I. P. (1992) Purification and characterization of thiamine triphosphatase from bovine brain, Biochim. Biophys. Acta, 1117, 326–332, doi: https://doi.org/10.1016/0304-4165(92)90032-P.

  53. 53.

    Bettendorff, L., Michel-Cahay, C., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1987) Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus, J. Neurochem., 49, 495–502, doi: https://doi.org/10.1111/j.1471-4159.1987.tb02891.x.

  54. 54.

    Suryo Rahmanto, Y., Dunn, L. L., and Richardson, D. R. (2007) Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo, Carcinogenesis, 28, 2172–2183, doi: https://doi.org/10.1093/carcin/bgm096.

  55. 55.

    Murata, K. (1982) Actions of two types of thiaminase on thiamin and its analogues, Ann. N. Y. Acad. Sci., 378, 146–156, doi: https://doi.org/10.1111/j.1749-6632.1982.tb31193.x.

  56. 56.

    Jenkins, A. H., Schyns, G., Potot, S., Sun, G., and Begley, T. P. (2007) A new thiamin salvage pathway, Nat. Chem. Biol., 3, 492–497, doi: https://doi.org/10.1038/nchembio.2007.13.

  57. 57.

    Petrov, S. A. (1992) Thiamine metabolism in mouse organs and tissues in vivo and in vitro, Fiziol. Zh., 38, 79–75.

  58. 58.

    Matsuo, T., and Suzuoki, Z. (1969) The occurrence of 4-methylthiazole-5-acetic acid as a thiamine metabolite in rabbit, dog, man and rat, J. Biochem., 65, 953–960.

  59. 59.

    Nishimune, T., Watanabe, Y., Okazaki, H., and Akai, H. (2000) Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria, J. Nutr., 130, 1625–1628, doi: https://doi.org/10.1093/jn/130.6.1625.

  60. 60.

    Bos, M., and Kozik, A. (2000) Some molecular and enzymatic properties of a homogeneous preparation of thiaminase I purified from carp liver, J. Protein Chem., 19, 75–84, doi: https://doi.org/10.1023/A:1007043530616.

  61. 61.

    Vimokesant, S. L., Hilker, D. M., Nakornchai, S., Rungruangsak, K., and Dhanamitta, S. (1975) Effects of betel nut and fermented fish on the thiamin status of north-eastern Thais, Am. J. Clin. Nutr., 28, 1458–1463, doi: https://doi.org/10.1093/ajcn/28.12.1458.

  62. 62.

    Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., Rosado, C. J., Langendorf, C. G., Pike, R. N., Bird, P. I., and Whisstock, J. C. (2006) An overview of the serpin superfamily, Genome Biol., 7, 216, doi: https://doi.org/10.1186/gb-2006-7-5-216.

  63. 63.

    Huertas-Gonzalez, N., Hernando-Requejo, V., Luciano-Garcia, Z., and Cervera-Rodilla, J. L. (2015) Wernicke’s encephalopathy, wet beriberi, and polyneuropathy in a patient with folate and thiamine deficiency related to gastric phytobezoar, Case Rep. Neurol. Med., 2015, 624807, doi: https://doi.org/10.1155/2015/624807.

  64. 64.

    Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F. H., Devoe, L. D., Ganapathy, V., and Prasad, P. D. (1999) Cloning of the human thiamine transporter, a member of the folate transporter family, J. Biol. Chem., 274, 31925–31929, doi: https://doi.org/10.1074/jbc.274.45.31925.

  65. 65.

    Said, H. M., Balamurugan, K., Subramanian, V. S., and Marchant, J. S. (2004) Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine, Am. J. Physiol. Gastrointest. Liver Physiol., 286, G491–G498, doi: https://doi.org/10.1152/ajpgi.00361.2003.

  66. 66.

    Akin, L., Kurtoglu, S., Kendirci, M., Akin, M. A., and Karakukcu, M. (2011) Does early treatment prevent deafness in thiamine-responsive megaloblastic anaemia syndrome? J. Clin. Res. Pediatr. Endocrinol., 3, 36–39, doi: https://doi.org/10.4274/jcrpe.v3i1.08.

  67. 67.

    Mendoza, R., Miller, A. D., and Overbaugh, J. (2013) Disruption of thiamine uptake and growth of cells by feline leukemia virus subgroup A, J. Virol., 87, 2412–2419, doi: https://doi.org/10.1128/JVI.03203-12.

  68. 68.

    Ortigoza-Escobar, J. D., Molero-Luis, M., Arias, A., Oyarzabal, A., Darin, N., Serrano, M., Garcia-Cazorla, A., Tondo, M., Hernandez, M., Garcia-Villoria, J., Casado, M., Gort, L., Mayr, J. A., Rodriguez-Pombo, P., Ribes, A., Artuch, R., and Perez-Duenas, B. (2016) Free thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome, Brain, 139, 31–38, doi: https://doi.org/10.1093/brain/awv342.

  69. 69.

    Alfadhel, M. (2017) Early infantile leigh-like SLC19A3 gene defects have a poor prognosis: report and review, J. Centr. Nerv. Syst. Dis., 9, 1179573517737521, doi: https://doi.org/10.1177/1179573517737521.

  70. 70.

    Zhang, K., Huentelman, M. J., Rao, F., Sun, E. I., Corneveaux, J. J., Schork, A. J., Wei, Z., Waalen, J., Miramontes-Gonzalez, J. P., Hightower, C. M., Maihofer, A. X., Mahata, M., Pastinen, T., Ehret, G. B., International Consortium for Blood Pressure Genome-Wide Association Studies, Schork, N. J., Eskin, E., Nievergelt, C. M., Saier, M. H., Jr., and O’Connor, D. T. (2014) Genetic implication of a novel thiamine transporter in human hypertension, J. Am. Coll. Cardiol., 63, 1542–1555, doi: https://doi.org/10.1016/j.jacc.2014.01.007.

  71. 71.

    Subramanian, V. S., Nabokina, S. M., Lin-Moshier, Y., Marchant, J. S., and Said, H. M. (2013) Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects, PLoS One, 8, e73503, doi: https://doi.org/10.1371/journal.pone.0073503.

  72. 72.

    Fraccascia, P., Sniekers, M., Casteels, M., and Van Veldhoven, P. P. (2007) Presence of thiamine pyrophosphate in mammalian peroxisomes, BMC Biochem., 8, 10, doi: https://doi.org/10.1186/1471-2091-8-10.

  73. 73.

    Nabokina, S. M., Inoue, K., Subramanian, V. S., Valle, J. E., Yuasa, H., and Said, H. M. (2014) Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter, J. Biol. Chem., 289, 4405–4416, doi: https://doi.org/10.1074/jbc.M113.528257.

  74. 74.

    Lemos, C., Faria, A., Meireles, M., Martel, F., Monteiro, R., and Calhau, C. (2012) Thiamine is a substrate of organic cation transporters in Caco-2 cells, Eur. J. Pharmacol., 682, 37–42, doi: https://doi.org/10.1016/j.ejphar.2012.02.028.

  75. 75.

    Chen, L., Shu, Y., Liang, X., Chen, E. C., Yee, S. W., Zur, A. A., Li, S., Xu, L., Keshari, K. R., Lin, M. J., Chien, H. C., Zhang, Y., Morrissey, K. M., Liu, J., Ostrem, J., Younger, N. S., Kurhanewicz, J., Shokat, K. M., Ashrafi, K., and Giacomini, K. M. (2014) OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin, Proc. Natl. Acad. Sci. USA, 111, 9983–9988, doi: https://doi.org/10.1073/pnas.1314939111.

  76. 76.

    Kato, K., Mori, H., Kito, T., Yokochi, M., Ito, S., Inoue, K., Yonezawa, A., Katsura, T., Kumagai, Y., Yuasa, H., Moriyama, Y., Inui, K., Kusuhara, H., and Sugiyama, Y. (2014) Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins, Pharm. Res., 31, 136–147, doi: https://doi.org/10.1007/s11095-013-1144-y.

  77. 77.

    Zhao, R., Gao, F., Wang, Y., Diaz, G. A., Gelb, B. D., and Goldman, I. D. (2001) Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells, J. Biol. Chem., 276, 1114–1118, doi: https://doi.org/10.1074/jbc.M007919200.

  78. 78.

    Tanihara, Y., Masuda, S., Sato, T., Katsura, T., Ogawa, O., and Inui, K. (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters, Biochem. Pharmacol., 74, 359–371, doi: https://doi.org/10.1016/j.bcp.2007.04.010.

  79. 79.

    Liu, S., Huang, H., Lu, X., Golinski, M., Comesse, S., Watt, D., Grossman, R. B., and Moscow, J. A. (2003) Down-regulation of thiamine transporter THTR-2 gene expression in breast cancer and its association with resistance to apoptosis, Mol. Cancer Res., 1, 665–673.

  80. 80.

    Liu, X., Lam, E. K., Wang, X., Zhang, J., Cheng, Y. Y., Lam, Y. W., Ng, E. K., Yu, J., Chan, F. K., Jin, H., and Sung, J. J. (2009) Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer, Tumour Biol., 30, 242–248, doi: 10.1159/000243767.

  81. 81.

    Ikehata, M., Ueda, K., and Iwakawa, S. (2012) Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines, Biol. Pharm. Bull., 35, 301–307, doi: https://doi.org/10.1248/bpb.35.301.

  82. 82.

    Zastre, J. A., Sweet, R. L., Hanberry, B. S., and Ye, S. (2013) Linking vitamin B1 with cancer cell metabolism, Cancer Metab., 1, 16, doi: https://doi.org/10.1186/2049-3002-1-16.

  83. 83.

    Mkrtchyan, G., Graf, A., Bettendorff, L., and Bunik, V. (2016) Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase, Neurochem. Int., 101, 66–75, doi: https://doi.org/10.1016/j.neuint.2016.10.009.

  84. 84.

    Daily, A., Liu, S., Bae, Y., Bhatnagar, S., and Moscow, J. A. (2011) Linear chain PEGylated recombinant Bacillus thiaminolyticus thiaminase I enzyme has growth inhibitory activity against lymphoid leukemia cell lines, Mol. Cancer Ther., 10, 1563–1570, doi: https://doi.org/10.1158/1535-7163.MCT-11-0003.

  85. 85.

    Liu, S., Stromberg, A., Tai, H. H., and Moscow, J. A. (2004) Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells, Mol. Cancer Res., 2, 477–487.

  86. 86.

    Liang, X., Chien, H. C., Yee, S. W., Giacomini, M. M., Chen, E. C., Piao, M., Hao, J., Twelves, J., Lepist, E. I., Ray, A. S., and Giacomini, K. M. (2015) Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3), Mol. Pharm., 12, 4301–4310, doi: https://doi.org/10.1021/acs.molpharmaceut.5b00501.

  87. 87.

    Kimura, N., Masuda, S., Tanihara, Y., Ueo, H., Okuda, M., Katsura, T., and Inui, K. (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1, Drug Metab. Pharmacokinet., 20, 379–386, doi: https://doi.org/10.2133/dmpk.20.379.

  88. 88.

    Liang, X., Yee, S. W., Chien, H. C., Chen, E. C., Luo, Q., Zou, L., Piao, M., Mifune, A., Chen, L., Calvert, M. E., King, S., Norheim, F., Abad, J., Krauss, R. M., and Giacomini, K. M. (2018) Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content, PLoS Biol., 16, e2002907, doi: https://doi.org/10.1371/journal.pbio.2002907.

  89. 89.

    Umehara, K. I., Iwatsubo, T., Noguchi, K., and Kamimura, H. (2007) Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter- mediated transport: insight into the development of drug candidates, Xenobiotica, 37, 618–634, doi: https://doi.org/10.1080/00498250701397705.

  90. 90.

    Osiezagha, K., Ali, S., Freeman, C., Barker, N. C., Jabeen, S., Maitra, S., Olagbemiro, Y., Richie, W., and Bailey, R. K. (2013) Thiamine deficiency and delirium, Innov. Clin. Neurosci., 10, 26–32.

  91. 91.

    Miralles-Linares, F., Puerta-Fernandez, S., Bernal-Lopez, M. R., Tinahones, F. J., Andrade, R. J., and Gomez-Huelgas, R. (2012) Metformin-induced hepatotoxicity, Diabetes Care, 35, e21, doi: https://doi.org/10.2337/dc11-2306.

  92. 92.

    Kalantar-Zadeh, K., and Kovesdy, C. P. (2016) Should restrictions be relaxed for metformin use in chronic kidney disease? No, we should never again compromise safety! Diabetes Care, 39, 1281–1286, doi: https://doi.org/10.2337/dc15-2327.

  93. 93.

    Toyama, K., Yonezawa, A., Masuda, S., Osawa, R., Hosokawa, M., Fujimoto, S., Inagaki, N., Inui, K., and Katsura, T. (2012) Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis, Br. J. Pharmacol., 166, 1183–1191, doi: https://doi.org/10.1111/j.1476-5381.2012.01853.x.

  94. 94.

    Vecchio, S., and Protti, A. (2011) Metformin-induced lactic acidosis: no one left behind, Crit. Care, 15, 107, doi: https://doi.org/10.1186/cc9404.

  95. 95.

    Amrein, K., Ribitsch, W., Otto, R., Worm, H. C., and Stauber, R. E. (2011) Severe lactic acidosis reversed by thiamine within 24 hours, Crit. Care, 15, 457, doi: https://doi.org/10.1186/cc10495.

  96. 96.

    Godo, S., Yoshida, Y., Fujita, M., Kudo, D., Nomura, R., Shimokawa, H., and Kushimoto, S. (2017) The dramatic recovery of a patient with biguanide-associated severe lactic acidosis following thiamine supplementation, Intern. Med., 56, 455–459, doi: https://doi.org/10.2169/internalmedicine.56.7754.

  97. 97.

    McGarvey, C., Franconi, C., Prentice, D., and Bynevelt, M. (2018) Metformin-induced encephalopathy: the role of thiamine, Intern. Med. J., 48, 194–197, doi: https://doi.org/10.1111/imj.13693.

  98. 98.

    Costantini, A. (2018) High-dose thiamine and essential tremor, BMJ Case Rep., 2018, bcr-2017-223945, doi: https://doi.org/10.1136/bcr-2017-223945.

  99. 99.

    Page, G. L., Laight, D., and Cummings, M. H. (2011) Thiamine deficiency in diabetes mellitus and the impact of thiamine replacement on glucose metabolism and vascular disease, Int. J. Clin. Pract., 65, 684–690, doi: https://doi.org/10.1111/j.1742-1241.2011.02680.x.

  100. 100.

    Moraes, J. O., Rodrigues, S. D. C., Pereira, L. M., Medeiros, R. C. N., de Cordova, C. A. S., and de Cordova, F. M. (2018) Amprolium exposure alters mice behavior and metabolism in vivo, Animal Model Exp. Med., 1, 272–281, doi: https://doi.org/10.1002/ame2.12040.

  101. 101.

    Singh, V., Peng, C. S., Li, D., Mitra, K., Silvestre, K. J., Tokmakoff, A., and Essigmann, J. M. (2014) Direct observation of multiple tautomers of oxythiamine and their recognition by the thiamine pyrophosphate riboswitch, ACS Chem. Biol., 9, 227–236, doi: https://doi.org/10.1021/cb400581f.

  102. 102.

    Hirsch, J. A., and Parrott, J. (2012) New considerations on the neuromodulatory role of thiamine, Pharmacology, 89, 111–116, doi: https://doi.org/10.1159/000336339.

  103. 103.

    Aleshin, V. A., Artiukhov, A. V., Oppermann, H., Kazantsev, A. V., Lukashev, N. V., and Bunik, V. I. (2015) Mitochondrial impairment may increase cellular NAD(P)H:resazurin oxidoreductase activity, perturbing the NAD(P)H-based viability assays, Cells, 4, 427–451, doi: https://doi.org/10.3390/cells4030427.

  104. 104.

    Fukui, S., Ohishi, N., Kishimotostakamizaw, A., and Hamazima, Y. (1965) Formation of “thiaminosuccinic acid” as an intermediate in the transformation of oxythiamine to thiamine by a thiamineless mutant of Escherichia coli, J. Biol. Chem., 240, 1315–1321.

  105. 105.

    Goyer, A., Hasnain, G., Frelin, O., Ralat, M. A., Gregory, J. F., 3rd, and Hanson, A. D. (2013) A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism, Biochem. J., 454, 533–542, doi: https://doi.org/10.1042/BJ20130516.

  106. 106.

    Zhang, F., Masania, J., Anwar, A., Xue, M., Zehnder, D., Kanji, H., Rabbani, N., and Thornalley, P. J. (2016) The uremic toxin oxythiamine causes functional thiamine deficiency in end-stage renal disease by inhibiting transketolase activity, Kidney Int., 90, 396–403, doi: https://doi.org/10.1016/j.kint.2016.03.010.

  107. 107.

    Linster, C. L., Van Schaftingen, E., and Hanson, A. D. (2013) Metabolite damage and its repair or pre-emption, Nat. Chem. Biol., 9, 72–80, doi: https://doi.org/10.1038/nchembio.1141.

  108. 108.

    Nemeria, N. S., Shome, B., DeColli, A. A., Heflin, K., Begley, T. P., Meyers, C. F., and Jordan, F. (2016) Competence of thiamin diphosphate-dependent enzymes with 2′-methoxythiamin diphosphate derived from bacimethrin, a naturally occurring thiamin anti-vitamin, Biochemistry, 55, 1135–1148, doi: https://doi.org/10.1021/acs.biochem.5b01300.

  109. 109.

    Agyei-Owusu, K., and Leeper, F. J. (2009) Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches, FEBS J., 276, 2905–2916, doi: https://doi.org/10.1111/j.1742-4658.2009.07018.x.

  110. 110.

    Iwadate, D., Sato, K., Kanzaki, M., Komiyama, C., Watanabe, C., Eguchi, T., and Uesaka, Y. (2017) Thiamine deficiency in metronidazole-induced encephalopathy: a metabolic correlation? J. Neurol. Sci., 379, 324–326, doi: https://doi.org/10.1016/j.jns.2017.06.042.

  111. 111.

    Ding, B. C., Whetstine, J. R., Witt, T. L., Schuetz, J. D., and Matherly, L. H. (2001) Repression of human reduced folate carrier gene expression by wild type p53, J. Biol. Chem., 276, 8713–8719, doi: https://doi.org/10.1074/jbc.M005248200.

  112. 112.

    Yang, Z., Ge, J., Yin, W., Shen, H., Liu, H., and Guo, Y. (2004) The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure, Yan Ke Xue Bao, 20, 259–263.

  113. 113.

    Chornyy, S., Parkhomenko, Y., and Chorna, N. (2017) Thiamine antagonists trigger p53-dependent apoptosis in differentiated SH-SY5Y cells, Sci. Rep., 7, 10632, doi: https://doi.org/10.1038/s41598-017-10878-x.

  114. 114.

    Pagadala, N. S., Bjorndahl, T. C., Blinov, N., Kovalenko, A., and Wishart, D. S. (2013) Molecular docking of thiamine reveals similarity in binding properties between the prion protein and other thiamine-binding proteins, J. Mol. Model., 19, 5225–5235, doi: 10.1007/s00894-013-1979-5.

  115. 115.

    Perez-Pineiro, R., Bjorndahl, T. C., Berjanskii, M. V., Hau, D., Li, L., Huang, A., Lee, R., Gibbs, E., Ladner, C., Dong, Y. W., Abera, A., Cashman, N. R., and Wishart, D. S. (2011) The prion protein binds thiamine, FEBS J., 278, 4002–4014, doi: https://doi.org/10.1111/j.1742-4658.2011.08304.x.

  116. 116.

    Pulkkinen, V., Manson, M. L., Safholm, J., Adner, M., and Dahlen, S. E. (2012) The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea, Am. J. Physiol. Lung Cell Mol. Physiol., 303, L956–L966, doi: https://doi.org/10.1152/ajplung.00205.2012.

  117. 117.

    Lossow, K., Hubner, S., Roudnitzky, N., Slack, J. P., Pollastro, F., Behrens, M., and Meyerhof, W. (2016) Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans, J. Biol. Chem., 291, 15358–15377, doi: https://doi.org/10.1074/jbc.M116.718544.

  118. 118.

    Lucas, J. I., and Marin, I. (2007) A new evolutionary paradigm for the Parkinson disease gene DJ-1, Mol. Biol. Evol., 24, 551–561, doi: https://doi.org/10.1093/molbev/msl186.

  119. 119.

    Mkrtchyan, G. V. (2017) Molecular Mechanisms of the Action of Thiamine (Vitamin B1) in Nervous Tissue [in Russian], Lomonosov Moscow State University, Moscow.

  120. 120.

    Tsepkova, P. M., Artiukhov, A. V., Boyko, A. I., Aleshin, V. A., Mkrtchyan, G. V., Zvyagintseva, M. A., Ryabov, S. I., Ksenofontov, A. L., Baratova, L. A., Graf, A. V., and Bunik, V. I. (2017) Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain, Biochemistry (Moscow), 82, 723–736, doi: https://doi.org/10.1134/S0006297917060098.

  121. 121.

    Petrov, S. A., and Donesko, E. V. (1989) Effect of thiamine and its metabolites on aspartate and alanine aminotransferase activity in the body of white rats and in donor blood, Fiziol. Zh., 35, 94–96.

  122. 122.

    Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., and Singh, D. (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection, Eur. J. Med. Chem., 70, 165–188, doi: https://doi.org/10.1016/j.ejmech.2013.09.050.

  123. 123.

    Lonsdale, D. (2004) Thiamine tetrahydrofurfuryl disulfide: a little known therapeutic agent, Med. Sci. Monit., 10, RA199–RA203.

  124. 124.

    Tapias, V., Jainuddin, S., Ahuja, M., Stack, C., Elipenahli, C., Vignisse, J., Gerges, M., Starkova, N., Xu, H., Starkov, A. A., Bettendorff, L., Hushpulian, D. M., Smirnova, N. A., Gazaryan, I. G., Kaidery, N. A., Wakade, S., Calingasan, N. Y., Thomas, B., Gibson, G. E., Dumont, M., and Beal, M. F. (2018) Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy, Hum. Mol. Genet., 27, 2874–2892, doi: https://doi.org/10.1093/hmg/ddy201.

  125. 125.

    Gibson, G. E., Hirsch, J. A., Fonzetti, P., Jordan, B. D., Cirio, R. T., and Elder, J. (2016) Vitamin B1 (thiamine) and dementia, Ann. N. Y. Acad. Sci., 1367, 21–30, doi: https://doi.org/10.1111/nyas.13031.

  126. 126.

    Volvert, M. L., Seyen, S., Piette, M., Evrard, B., Gangolf, M., Plumier, J. C., and Bettendorff, L. (2008) Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives, BMC Pharmacol., 8, 10, doi: https://doi.org/10.1186/1471-2210-8-10.

  127. 127.

    Vignisse, J., Sambon, M., Gorlova, A., Pavlov, D., Caron, N., Malgrange, B., Shevtsova, E., Svistunov, A., Anthony, D. C., Markova, N., Bazhenova, N., Coumans, B., Lakaye, B., Wins, P., Strekalova, T., and Bettendorff, L. (2017) Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels, Mol. Cell Neurosci., 82, 126–136, doi: https://doi.org/10.1016/j.mcn.2017.05.005.

  128. 128.

    Mouton-Liger, F., Rebillat, A. S., Gourmaud, S., Paquet, C., Leguen, A., Dumurgier, J., Bernadelli, P., Taupin, V., Pradier, L., Rooney, T., and Hugon, J. (2015) PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model, Cell Death Dis., 6, e1594, doi: https://doi.org/10.1038/cddis.2014.552.

  129. 129.

    Sun, X. J., Zhao, L., Zhao, N., Pan, X. L., Fei, G. Q., Jin, L. R., and Zhong, C. J. (2012) Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose, Neurosci. Bull., 28, 561–566, doi: https://doi.org/10.1007/s12264-012-1264-0.

  130. 130.

    Zhang, X., Hernandez, I., Rei, D., Mair, W., Laha, J. K., Cornwell, M. E., Cuny, G. D., Tsai, L. H., Steen, J. A., and Kosik, K. S. (2013) Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models, J. Biol. Chem., 288, 22042–22056, doi: https://doi.org/10.1074/jbc.M112.436402.

  131. 131.

    Markova, N., Bazhenova, N., Anthony, D. C., Vignisse, J., Svistunov, A., Lesch, K. P., Bettendorff, L., and Strekalova, T. (2017) Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice, Prog. Neuropsychopharmacol. Biol. Psychiatry, 75, 148–156, doi: https://doi.org/10.1016/j.pnpbp.2016.11.001.

  132. 132.

    Gold, M., Hauser, R. A., and Chen, M. F. (1998) Plasma thiamine deficiency associated with Alzheimer’s disease but not Parkinson’s disease, Metab. Brain Dis., 13, 43–53, doi: https://doi.org/10.1023/A:1020678912330.

  133. 133.

    Pan, X., Fei, G., Lu, J., Jin, L., Pan, S., Chen, Z., Wang, C., Sang, S., Liu, H., Hu, W., Zhang, H., Wang, H., Wang, Z., Tan, Q., Qin, Y., Zhang, Q., Xie, X., Ji, Y., Cui, D., Gu, X., Xu, J., Yu, Y., and Zhong, C. (2016) Measurement of blood thiamine metabolites for Alzheimer’s disease diagnosis, EBioMedicine, 3, 155–162, doi: https://doi.org/10.1016/j.ebiom.2015.11.039.

  134. 134.

    Pan, X., Sang, S., Fei, G., Jin, L., Liu, H., Wang, Z., Wang, H., and Zhong, C. (2017) Enhanced activities of blood thiamine diphosphatase and monophosphatase in Alzheimer’s disease, PLoS One, 12, e0167273, doi: https://doi.org/10.1371/journal.pone.0167273.

  135. 135.

    Jimenez-Jimenez, F. J., Molina, J. A., Hernanz, A., Fernandez-Vivancos, E., de Bustos, F., Barcenilla, B., Gomez-Escalonilla, C., Zurdo, M., Berbel, A., and Villanueva, C. (1999) Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease, Neurosci. Lett., 271, 33–36, doi: https://doi.org/10.1016/S0304-3940(99)00515-7.

  136. 136.

    Mizuno, Y., Matuda, S., Yoshino, H., Mori, H., Hattori, N., and Ikebe, S. (1994) An immunohistochemical study on α-ketoglutarate dehydrogenase complex in Parkinson’s disease, Ann. Neurol., 35, 204–210, doi: https://doi.org/10.1002/ana.410350212.

  137. 137.

    Haglin, L., Johansson, I., Forsgren, L., and Backman, L. (2017) Intake of vitamin B before onset of Parkinson’s disease and atypical parkinsonism and olfactory function at the time of diagnosis, Eur. J. Clin. Nutr., 71, 97–102, doi: https://doi.org/10.1038/ejcn.2016.181.

  138. 138.

    Boyko, A., Ksenofontov, A., Ryabov, S., Baratova, L., Graf, A., and Bunik, V. (2017) Delayed influence of spinal cord injury on the amino acids of NO. metabolism in rat cerebral cortex is attenuated by thiamine, Front. Med. (Lausanne), 4, 249, doi: https://doi.org/10.3389/fmed.2017.00249.

  139. 139.

    Mkrtchyan, G. V., Ucal, M., Mullebner, A., Dumitrescu, S., Kames, M., Moldzio, R., Molcanyi, M., Schaefer, S., Weidinger, A., Schaefer, U., Hescheler, J., Duvigneau, J. C., Redl, H., Bunik, V. I., and Kozlov, A. V. (2018) Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex, Biochim. Biophys. Acta Bioenerg., 1859, 925–931, doi: https://doi.org/10.1016/j.bbabio.2018.05.005.

Download references

Author information

Correspondence to V. I. Bunik.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Ethical statement. This paper does not describe non-published studies of the authors performed with human or animal subjects.

Additional information

Published in Russian in Biokhimiya, 2019, Vol. 84, No. 8, pp. 1051–1075.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aleshin, V.A., Mkrtchyan, G.V. & Bunik, V.I. Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance. Biochemistry Moscow 84, 829–850 (2019) doi:10.1134/S0006297919080017

Download citation

Keywords

  • metformin
  • p53
  • serpin
  • thiamine
  • thiamine transport
  • thiaminase
  • vitamin B1